TI-57

Last updated
The programmable calculator TI-57 with LED display TI 57-b.jpg
The programmable calculator TI-57 with LED display
The programmable calculator TI-57 LCD with liquid crystal display TI-57 LCD-IMG 0391.jpg
The programmable calculator TI-57 LCD with liquid crystal display

The TI-57 was a programmable calculator made by Texas Instruments between 1977 and 1982. There were three machines by this name made by TI, the first was the TI-57 with LED display released in September 1977 along the more powerful TI-58 and TI-59. It had 50 program steps and eight memory registers. Two later versions named TI-57 LCD and TI-57 LCD-II have a LCD display, but were less powerful (ran much slower) and had much less memory: 48 bytes to be allocated between program 'steps' and storage registers.

Contents

The TI-57 lacked non-volatile memory, so any programs entered were lost when the calculator was switched off or the battery ran out.

The LED display version of the TI-57 had a rechargeable Nickel-Cadmium battery pack BP7 which contains two AA size batteries and electronics to raise the voltage to the 9V required by the calculator. A popular modification is to power it from a 9V battery and use the battery cover of a LED TI-30 or a part of the dismantled battery pack. This modification provides a better battery life than the original battery pack.

Included, with at least the original version was a book entitled "Making Tracks Into Programming". It was self described as "A step-by-step learning guide to the power, ease and fun of using your TI Programmable 57".

Radio Shack also marketed this calculator, rebranded as the EC-4000.

Programming

The programming capabilities of the TI-57 were similar to a primitive macro assembler. Any keystroke could be stored, along with some simple program flow control commands and conditional tests. These included:

GTO (GoTO): Causes program pointer to jump immediately to a Label (0-9) or to a specific program step (00 to 49).

SBR (SuBRoutine): Causes a program to jump to a Label, and on encountering an Inv SBR command, continue executing at the instruction immediately following the original SBR.

DSZ (Decrement and Skip on Zero): Decrements storage register zero, and skips the next instruction if the result is zero. There was also an inverse form, Decrement and Skip if Not Zero.

Tests for equality/inequality could be performed against a value on the display (the x register) and a dedicated test register, t. The result of the test would cause the next instruction to be conditionally skipped.

Programs could be edited by inserting, deleting, or overwriting a program step. A NOP (No OPeration) function was provided to allow a program step to be ignored. Due to the hard limit of 50 program steps, use of NOP was infrequent. The TI-57 used the "one step, one instruction" principle, regardless of whether one instruction required one or up to four keypresses.

Sample program

The following program generates pseudo-random numbers within the range of 1 to 6.

StepCodeKey(s)FunctionComment
00302ndyxπ Pi
0175++
0233 0RCL0RCL 0Recall register 0
0385=
0435yxyx
050888
0665
07492nd)Int Integer function
0885=
0932 0STO0STO 0Store result in register 0
1055xx
110666Upper bound of the random number
1275++
130111
1485=
15492nd)IntInteger function
1681R/SR/SStop (Pause)
1771RSTRSTReset (back to step 00)

Related Research Articles

Calculator Electronic device used for calculations

An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics.

TI-89 series Series of graphing calculators produced by Texas Instruments

The TI-89 and the TI-89 Titanium are graphing calculators developed by Texas Instruments (TI). They are differentiated from most other TI graphing calculators by their computer algebra system, which allows symbolic manipulation of algebraic expressions—equations can be solved in terms of variables, whereas the TI-83/84 series can only give a numeric result.

The Motorola 68000 series is a family of 32-bit complex instruction set computer (CISC) microprocessors. During the 1980s and early 1990s, they were popular in personal computers and workstations and were the primary competitors of Intel's x86 microprocessors. They were best known as the processors used in the early Apple Macintosh, the Sharp X68000, the Commodore Amiga, the Sinclair QL, the Atari ST, the Sega Genesis, the Capcom System I (Arcade), the AT&T UnixPC, the Tandy Model 16/16B/6000, the Sun Microsystems Sun-1, Sun-2 and Sun-3, the NeXT Computer, the Texas Instruments TI-89/TI-92 calculators, the Palm Pilot and the Space Shuttle. Although no modern desktop computers are based on processors in the 680x0 series, derivative processors are still widely used in embedded systems.

A one-instruction set computer (OISC), sometimes called an ultimate reduced instruction set computer (URISC), is an abstract machine that uses only one instruction – obviating the need for a machine language opcode. With a judicious choice for the single instruction and given infinite resources, an OISC is capable of being a universal computer in the same manner as traditional computers that have multiple instructions. OISCs have been recommended as aids in teaching computer architecture and have been used as computational models in structural computing research.

Apollo Guidance Computer Guidance and navigation computer used in Apollo spacecraft

The Apollo Guidance Computer (AGC) is a digital computer produced for the Apollo program that was installed on board each Apollo command module (CM) and Apollo Lunar Module (LM). The AGC provided computation and electronic interfaces for guidance, navigation, and control of the spacecraft.

In computer science, self-modifying code is code that alters its own instructions while it is executing – usually to reduce the instruction path length and improve performance or simply to reduce otherwise repetitively similar code, thus simplifying maintenance. Self-modification is an alternative to the method of "flag setting" and conditional program branching, used primarily to reduce the number of times a condition needs to be tested. The term is usually only applied to code where the self-modification is intentional, not in situations where code accidentally modifies itself due to an error such as a buffer overflow.

TI-83 series Series of graphing calculators produced by Texas Instruments

The TI-83 series is a series of graphing calculators manufactured by Texas Instruments.

HP-41C

The HP-41C series are programmable, expandable, continuous memory handheld RPN calculators made by Hewlett-Packard from 1979 to 1990. The original model, HP-41C, was the first of its kind to offer alphanumeric display capabilities. Later came the HP-41CV and HP-41CX, offering more memory and functionality.

Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how the machine language instructions in that architecture identify the operand(s) of each instruction. An addressing mode specifies how to calculate the effective memory address of an operand by using information held in registers and/or constants contained within a machine instruction or elsewhere.

The COP8 microcontroller from National Semiconductor is an 8-bit CISC core microcontroller, whose main features are:

TI-59 / TI-58 Programmable calculator produced by Texas Instruments

The TI-59 is an early programmable calculator, that was manufactured by Texas Instruments from 1977. It is the successor to the TI SR-52, quadrupling the number of "program steps" of storage, and adding "ROM Program Modules". Just like the SR-52, it has a magnetic card reader for external storage. One quarter of the memory is stored on each side of one card.

Elektronika MK-52

The Elektronika MK-52 is an RPN-programmable calculator manufactured in the Soviet Union during the years 1983 to 1992. It belongs to the third generation of Soviet programmable calculators. Its original selling price was 115 rubles.

In theoretical computer science the random-access stored-program (RASP) machine model is an abstract machine used for the purposes of algorithm development and algorithm complexity theory.

A counter machine is an abstract machine used in a formal logic and theoretical computer science to model computation. It is the most primitive of the four types of register machines. A counter machine comprises a set of one or more unbounded registers, each of which can hold a single non-negative integer, and a list of arithmetic and control instructions for the machine to follow. The counter machine is typically used in the process of designing parallel algorithms in relation to the mutual exclusion principle. When used in this manner, the counter machine is used to model the discrete time-steps of a computational system in relation to memory accesses. By modeling computations in relation to the memory accesses for each respective computational step, parallel algorithms may be designed in such a matter to avoid interlocking, the simultaneous writing operation by two threads to the same memory address.

TI-990

The TI-990 was a series of 16-bit minicomputers sold by Texas Instruments (TI) in the 1970s and 1980s. The TI-990 was a replacement for TI's earlier minicomputer systems, the TI-960 and the TI-980. It had several unique features, and was easier to program than its predecessors.

HP 35s Programmable scientific calculator produced by Hewlett-Packard

The HP 35s (F2215A) is a Hewlett-Packard non-graphing programmable scientific calculator. Although it is a successor to the HP 33s, it was introduced to commemorate the 35th anniversary of the HP-35, Hewlett-Packard's first pocket calculator. HP also released a limited production anniversary edition with shiny black overlay and engraving "Celebrating 35 years".

Casio FX-502P series Series of programmable calculators produced by Casio

The FX-501P and FX-502P were programmable calculators, manufactured by Casio from 1978/1979. They were the predecessors of the FX-601P and FX-602P.

Keystroke programming describes a specific way of programming by which each keystroke on a device or application is recorded in some way and then played back so that the recorded key-presses can be repeated multiple times. Keystroke programming is most commonly but not exclusively found in programmable calculators, but there are keystroke-programmable software applications, too, for example Vim

Elektronika B3-34

Elektronika B3-34 was a Soviet programmable calculator. It was released in 1980 and was sold for 85 rubles.

Casio Algebra FX Series Series of Casio graphing calculators

The Casio Algebra FX series was a line of graphing calculators manufactured by Casio Computer Co., Ltd from 1999 to 2003. They were the successor models to the CFX-9970G, the first Casio calculator with computer algebra system, or CAS, a program for symbolic manipulation of mathematical expressions. The calculators were discontinued and succeeded by the Casio ClassPad 300 in 2003.