In algebraic geometry, the tangent space to a functor generalizes the classical construction of a tangent space such as the Zariski tangent space. The construction is based on the following observation. [1] Let X be a scheme over a field k.
(To see this, use the fact that any local homomorphism must be of the form
Let F be a functor from the category of k-algebras to the category of sets. Then, for any k-point , the fiber of over p is called the tangent space to F at p. [2] If the functor F preserves fibered products (e.g. if it is a scheme), the tangent space may be given the structure of a vector space over k. If F is a scheme X over k (i.e., ), then each v as above may be identified with a derivation at p and this gives the identification of with the space of derivations at p and we recover the usual construction.
The construction may be thought of as defining an analog of the tangent bundle in the following way. [3] Let . Then, for any morphism of schemes over k, one sees ; this shows that the map that f induces is precisely the differential of f under the above identification.
In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.
In algebra, a flat module over a ring R is an R-module M such that taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.
In algebraic geometry, the Zariski tangent space is a construction that defines a tangent space at a point P on an algebraic variety V. It does not use differential calculus, being based directly on abstract algebra, and in the most concrete cases just the theory of a system of linear equations.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
In algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by Hartshorne (1967), and in 1961-2 at IHES written up as SGA2 - Grothendieck (1968), republished as Grothendieck (2005). Given a function defined on an open subset of an algebraic variety, local cohomology measures the obstruction to extending that function to a larger domain. The rational function , for example, is defined only on the complement of on the affine line over a field , and cannot be extended to a function on the entire space. The local cohomology module detects this in the nonvanishing of a cohomology class . In a similar manner, is defined away from the and axes in the affine plane, but cannot be extended to either the complement of the -axis or the complement of the -axis alone ; this obstruction corresponds precisely to a nonzero class in the local cohomology module .
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.
In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
This is a glossary of algebraic geometry.
In mathematics, a sheaf of O-modules or simply an O-module over a ringed space is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).
In algebraic geometry, given a morphism f: X → S of schemes, the cotangent sheaf on X is the sheaf of -modules that represents S-derivations in the sense: for any -modules F, there is an isomorphism
In algebraic geometry, a functor represented by a schemeX is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is the set of all morphisms . The scheme X is then said to represent the functor and that classify geometric objects over S given by F.
In algebraic geometry, given a linear algebraic group G over a field k, a distribution on it is a linear functional satisfying some support condition. A convolution of distributions is again a distribution and thus they form the Hopf algebra on G, denoted by Dist(G), which contains the Lie algebra Lie(G) associated to G. Over a field of characteristic zero, Cartier's theorem says that Dist(G) is isomorphic to the universal enveloping algebra of the Lie algebra of G and thus the construction gives no new information. In the positive characteristic case, the algebra can be used as a substitute for the Lie group–Lie algebra correspondence and its variant for algebraic groups in the characteristic zero ; for example, this approach taken in.
In algebraic geometry, a sheaf of algebras on a ringed space X is a sheaf of commutative rings on X that is also a sheaf of -modules. It is quasi-coherent if it is so as a module.
In algebraic geometry, the dimension of a scheme is a generalization of a dimension of an algebraic variety. Scheme theory emphasizes the relative point of view and, accordingly, the relative dimension of a morphism of schemes is also important.
In algebraic geometry, given a morphism of schemes , the diagonal morphism
In algebraic geometry, an unramified morphism is a morphism of schemes such that (a) it is locally of finite presentation and (b) for each and , we have that