Tarball (oil)

Last updated
A tarball on a beach on the Galapagos Islands in 2001, from an oil spill from the tanker Jessica. Tarball.jpg
A tarball on a beach on the Galápagos Islands in 2001, from an oil spill from the tanker Jessica .
Tar balls from the Deepwater Horizon oil spill washed ashore on Okaloosa Island in Fort Walton Beach, Florida on June 16, 2010 16POilSpill.jpg
Tar balls from the Deepwater Horizon oil spill washed ashore on Okaloosa Island in Fort Walton Beach, Florida on June 16, 2010

A tarball is a blob of petroleum which has been weathered after floating in the ocean. Tarballs are an aquatic pollutant in most environments, although they can occur naturally and as such are not always associated with oil spills. [1] [2] [3]

Contents

Distribution

Tarballs may be dispersed over long distances by deep sea currents. [2] The density of tarballs depends on the solids picked up in the weathering process. [4] They can range in density with some being more dense than seawater, which, at 1.025 g/ml, is more dense than the density of fresh water. When the tarballs are less dense than seawater, they can travel over great distances.

They can also be contained like oil and picked up using a variety of methods. Containment booms can be used to isolate tarballs similar to methods used to isolate oil. [5] [6]

Concentration and decomposition

Tarball concentration and features have been used to assess the extent of oil spills and their composition can also be used to identify their sources of origin. [7] [8] They are slowly decomposed by microorganisms such as Chromobacterium violaceum , Cladosporium resinae , Bacillus submarinus , Micrococcus varians , Pseudomonas aeruginosa , Candida marina , and Saccharomyces estuari . [1]

Related Research Articles

<span class="mw-page-title-main">Petroleum</span> Naturally occurring combustible liquid

Petroleum or crude oil, also referred to as simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that consist of refined crude oil.

<span class="mw-page-title-main">Oil spill</span> Release of petroleum into the environment

An oil spill is the release of a liquid petroleum hydrocarbon into the environment, especially the marine ecosystem, due to human activity, and is a form of pollution. The term is usually given to marine oil spills, where oil is released into the ocean or coastal waters, but spills may also occur on land. Oil spills may be due to releases of crude oil from tankers, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum products and their by-products, heavier fuels used by large ships such as bunker fuel, or the spill of any oily refuse or waste oil.

<span class="mw-page-title-main">Tar pit</span> Asphalt pit or asphalt lake

Tar pits, sometimes referred to as asphalt pits, are large asphalt deposits. They form in the presence of petroleum, which is created when decayed organic matter is subjected to pressure underground. If this crude oil seeps upward via fractures, conduits, or porous sedimentary rock layers, it may pool up at the surface. The lighter components of the crude oil evaporate into the atmosphere, leaving behind a black, sticky asphalt. Tar pits are often excavated because they contain large fossil collections.

<span class="mw-page-title-main">Seawater</span> Water from a sea or an ocean

Seawater, or sea water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5%. This means that every kilogram of seawater has approximately 35 grams (1.2 oz) of dissolved salts. The average density at the surface is 1.025 kg/L. Seawater is denser than both fresh water and pure water because the dissolved salts increase the mass by a larger proportion than the volume. The freezing point of seawater decreases as salt concentration increases. At typical salinity, it freezes at about −2 °C (28 °F). The coldest seawater still in the liquid state ever recorded was found in 2010, in a stream under an Antarctic glacier: the measured temperature was −2.6 °C (27.3 °F).

<span class="mw-page-title-main">Channel Islands (California)</span> Archipelago off the coast of southern California, US

The Channel Islands are an eight-island archipelago located within the Southern California Bight in the Pacific Ocean, off the coast of California. They define the Santa Barbara Channel, which sits between the islands and the California mainland. The four Northern Channel Islands are part of the Transverse Ranges geologic province, and the four Southern Channel Islands are part of the Peninsular Ranges province. Five of the islands are within the Channel Islands National Park, and the waters surrounding these islands make up Channel Islands National Marine Sanctuary. The Nature Conservancy was instrumental in establishing the Channel Islands National Marine Sanctuary.

<span class="mw-page-title-main">Cold seep</span> Ocean floor area where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs

A cold seep is an area of the ocean floor where seepage of fluids rich in hydrogen sulfide, methane, and other hydrocarbons occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water; on the contrary, its temperature is often slightly higher. The "cold" is relative to the very warm conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.

<span class="mw-page-title-main">Bioremediation</span> Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer advantages as it aims to be sustainable, eco-friendly, cheap, and scalable.

Environmental biotechnology is biotechnology that is applied to and used to study the natural environment. Environmental biotechnology could also imply that one try to harness biological process for commercial uses and exploitation. The International Society for Environmental Biotechnology defines environmental biotechnology as "the development, use and regulation of biological systems for remediation of contaminated environments, and for environment-friendly processes ".

<span class="mw-page-title-main">Petroleum seep</span> Place where natural hydrocarbons escape

A petroleum seep is a place where natural liquid or gaseous hydrocarbons escape to the Earth's atmosphere and surface, normally under low pressure or flow. Seeps generally occur above either terrestrial or offshore petroleum accumulation structures. The hydrocarbons may escape along geological layers, or across them through fractures and fissures in the rock, or directly from an outcrop of oil-bearing rock.

<i>Aegean Sea</i> tanker oil spill 1992 environmental disaster off the coast of Galicia, Spain

The Aegean Sea tanker oil spill was a spill that occurred on 3 December 1992 when the double-bottomed Greek-flagged oil tanker, Aegean Sea, en route to the Repsol refinery in A Coruña, Spain, suffered an accident off the Galician coast. The ship had successfully passed all required tests and revisions. The accident occurred during extreme weather conditions and affected the Galician coast resulting in ecosystem damage, as well as damage to the fishing and tourist industries in A Coruña.

<span class="mw-page-title-main">Brine pool</span> Accumulation of brine in a seafloor depression

A brine pool, sometimes called an underwater lake, deepwater or brine lake, is a volume of brine collected in a seafloor depression. These pools are dense bodies of water that have a salinity that is typically three to eight times greater than the surrounding ocean. Brine pools are commonly found below polar sea ice and in the deep ocean. Those below sea ice form through a process called brine rejection. For deep-sea brine pools, salt is necessary to increase the salinity gradient. The salt can come from one of two processes: the dissolution of large salt deposits through salt tectonics or geothermally-heated brine issued from tectonic spreading centers.

<span class="mw-page-title-main">1969 Santa Barbara oil spill</span> Oil platform blow-out fouled the coast of California resulting in environmental legislation

The Santa Barbara oil spill occurred in January and February 1969 in the Santa Barbara Channel, near the city of Santa Barbara in Southern California. It was the largest oil spill in United States waters at the time. It remains the largest oil spill to have occurred in the waters off California.

<span class="mw-page-title-main">Coal Oil Point seep field</span> Marine petroleum seep area near Goleta, California

The Coal Oil Point seep field (COP) in the Santa Barbara Channel offshore from Goleta, California, is a marine petroleum seep area of about three square kilometres, within the Offshore South Ellwood Oil Field and stretching from the coastline southward more than three kilometers (1.9 mi). Major seeps are located in water depths from 20 to 80 meters. The seep field is among the largest and best studied areas of active marine seepage in the world. These perennial and continuous oil and gas seeps have been active on the northern edge of the Santa Barbara Channel for at least 500,000 years. The combined seeps in the field release about 40 tons of methane per day and about 19 tons of reactive organic gas ; about twice the hydrocarbon air pollution released by all the cars and trucks in Santa Barbara County in 1990. The liquid petroleum produces a slick that is many kilometres long and when degraded by evaporation and weathering, produces tar balls which wash up on the beaches for miles around.

<i>Deepwater Horizon</i> oil spill Oil spill in the Gulf of Mexico

The Deepwater Horizon oil spill was an environmental disaster which began on 20 April 2010, off the coast of the United States in the Gulf of Mexico on the BP-operated Macondo Prospect, considered the largest marine oil spill in the history of the petroleum industry and estimated to be 8 to 31 percent larger in volume than the previous largest, the Ixtoc I oil spill, also in the Gulf of Mexico. Caused in the aftermath of a blowout and explosion on the Deepwater Horizon oil platform, the United States federal government estimated the total discharge at 4.9 MMbbl. After several failed efforts to contain the flow, the well was declared sealed on 19 September 2010. Reports in early 2012 indicated that the well site was still leaking. The Deepwater Horizon oil spill is regarded as one of the largest environmental disasters in world history.

<span class="mw-page-title-main">Boom (containment)</span> Temporary floating barrier used to contain an oil spill

A containment boom is a temporary floating barrier used to contain an oil spill. Booms are used to reduce the possibility of polluting shorelines and other resources, and to help make recovery easier. Booms help to concentrate oil in thicker surface layers so that skimmers, vacuums, or other collection methods can be used more effectively. They come in many shapes and sizes, with various levels of effectiveness in different types of water conditions.

Environmental impact of the <i>Deepwater Horizon</i> oil spill

The 2010 Deepwater Horizon oil spill in the Gulf of Mexico has been described as the worst environmental disaster in the United States, releasing about 4.9 million barrels of crude oil making it the largest marine oil spill. Both the spill and the cleanup efforts had effects on the environment.

<i>Deepwater Horizon</i> oil spill response Containment and cleanup efforts

The Deepwater Horizon oil spill occurred between 10 April and 19 September 2010 in the Gulf of Mexico. A variety of techniques were used to address fundamental strategies for addressing the spilled oil, which were: to contain oil on the surface, dispersal, and removal. While most of the oil drilled off Louisiana is a lighter crude, the leaking oil was of a heavier blend which contained asphalt-like substances. According to Ed Overton, who heads a federal chemical hazard assessment team for oil spills, this type of oil emulsifies well. Once it becomes emulsified, it no longer evaporates as quickly as regular oil, does not rinse off as easily, cannot be broken down by microbes as easily, and does not burn as well. "That type of mixture essentially removes all the best oil clean-up weapons", Overton said.

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation.

The Marine Unsaturated Model is a two-dimensional finite element model capable of simulating the migration of water and solutes in saturated-unsaturated porous media while accounting for the impact of solute concentration on water density and viscosity, as saltwater is heaving and more viscous than freshwater. The detailed formulation of the MARUN model is found in and. The model was used to investigate seepage flow in trenches and dams, the migration of brine following evaporation and, submarine groundwater discharge, and beach hydrodynamics to explain the persistence of some of the Exxon Valdez oil in Alaska beaches.

Hydrocarbonoclastic bacteria are a heterogeneous group of prokaryotes which can degrade and utilize hydrocarbon compounds as source of carbon and energy. Despite being present in most of environments around the world, several of these specialized bacteria live in the sea and have been isolated from polluted seawater.

References

  1. 1 2 Itah, A. Y.; Essien, J. P. (October 2005). "Growth Profile and Hydrocarbonoclastic Potential of Microorganisms Isolated from Tarballs in the Bight of Bonny, Nigeria". World Journal of Microbiology and Biotechnology. 21 (6–7): 1317–1322. doi:10.1007/s11274-004-6694-z.
  2. 1 2 Hostettler, Frances D.; Rosenbauer, Robert J.; Lorenson, Thomas D.; Dougherty, Jennifer (June 2004). "Geochemical characterization of tarballs on beaches along the California coast. Part I: Shallow seepage impacting the Santa Barbara Channel Islands, Santa Cruz, Santa Rosa, and San Miguel". Organic Geochemistry. 35 (6): 725–746. doi:10.1016/j.orggeochem.2004.01.022. ISSN   0146-6380.
  3. Lorenson, T. D.; Hostettler, F. D.; Rosenbauer, R. J.; Peters, K. E.; Kvenvolden, K. A.; Dougherty, J. A.; Gutmacher, C. E.; Wong, F. L.; Normark, W. R. (2009). "Natural offshore seepage and related tarball accumulation on the California coastline; Santa Barbara Channel and the southern Santa Maria Basin; source identification and inventory". usgs.gov. US Geological Survey. Archived from the original on 2010-06-13. Retrieved 2010-06-03.
  4. Goodman, R. (April 2003). "Tar Balls: The End State". Spill Science & Technology Bulletin. 8 (2): 117–121. doi:10.1016/S1353-2561(03)00045-8.
  5. Fang, J.; Wong, K. V. (January 2006). "An Advanced VOF Algorithm for Oil Boom Design". International Journal of Modelling and Simulation. 26 (1): 36–44. doi:10.1080/02286203.2006.11442349.
  6. Fang, J.; Wong, K. V. (April 2003). "An Advanced VOF Algorithm for Oil Boom Design". International Journal of Modelling and Simulation. 8 (2): 117–121.
  7. Knap, Anthony H.; Burns, Kathryn A.; Dawson, Rodger; Ehrhardt, Manfred; Palmork, Karsten H. (July 1986). "Dissolved/dispersed hydrocarbons, tarballs and the surface microlayer: Experiences from an IOC/UNEP Workshop in Bermuda, December 1984". Marine Pollution Bulletin. 17 (7): 313–319. doi:10.1016/0025-326X(86)90217-1.
  8. Wang, Zhendi; Fingas, Merv; Landriault, Michael; Sigouin, Lise; Castle, Bill; Hostetter, David; Zhang, Dachung; Spencer, Brad (1998). "Identification and Linkage of Tarballs from the Coasts of Vancouver Island and Northern California Using GC/MS and Isotopic Techniques". Journal of High Resolution Chromatography. 21 (7): 383–395. doi:10.1002/(SICI)1521-4168(19980701)21:7<383::AID-JHRC383>3.0.CO;2-3.

Further reading