Taylor Spatial Frame

Last updated
A Taylor Spatial Frame on the left leg consisting of metal rings, pins and struts Taylor Spatial Frame.jpg
A Taylor Spatial Frame on the left leg consisting of metal rings, pins and struts

The Taylor Spatial Frame (TSF) is an external fixator used by paediatric and orthopaedic surgeons to treat complex fractures [1] and bone deformities. The medical device shares a number of components and features of the Ilizarov apparatus. The Taylor Spatial Frame is a hexapod device based on a Stewart platform, and was invented by orthopaedic surgeon Charles Taylor. The device consists of two or more aluminum or carbon fibre rings connected by six struts. Each strut can be independently lengthened or shortened to achieve the desired result, e.g. compression at the fracture site, lengthening, etc. Connected to a bone by tensioned wires or half pins, the attached bone can be manipulated in three dimensions and 9 degrees of freedom. Angular, translational, rotational, and length deformities can all be corrected simultaneously with the TSF.

Contents

The TSF is used in both adults and children. It is used for the treatment of acute fractures, mal-unions, non-unions and congenital deformities. It can be used on both the upper and lower limbs. Specialised foot rings (which are not seen in the picture) are also available for the treatment of complex foot deformities.[ citation needed ]

Post Operative procedure

Correcting deformities

Once the fixator is attached to the bone, the deformity is characterised by studying the postoperative x-rays, or CT scans. The angular, translational, rotational, and length deformity values are then entered into specialised software, along with mounting parameters and hardware parameters such as the ring size and initial strut lengths. The software then produces a "prescription" of strut changes that the patient follows. The struts are adjusted daily by the patient until the correct alignment is achieved.[ citation needed ]

Correction of the bone deformity can typically take 3–4 weeks. For simpler fractures where no deformity is present the struts may still be adjusted post-surgery to achieve better bone alignment, but the correction takes less time. For individuals performing strut adjustment. a hand mirror may be useful to aid in reading the strut settings.

Once the deformity has been corrected, the frame is then left on the limb until the bone fully heals. This often takes 3–6 months, depending on the nature and degree of deformity.

Dynamisation

When the bone has sufficiently healed, the frame can be dynamised. This is a process of gradually reducing the supportive role of the frame by reducing the length stability. This causes force that was previously transmitted around the fracture site and through the struts to be transmitted through the bone.[ citation needed ]

Removal of frame

After a period of dynamisation, the frame can be removed. This is a relatively simple procedure often performed under gas and air analgesic.

The rings are removed by cutting the olive wires using wire cutters.

The wires are then removed by first sterilising them and then pulling them through the leg using pliers. The threaded half pins are simply unscrewed.

Use for fractures

External fixation via TSFs tends to be less invasive than internal fixation and therefore has lower risks of infection associated with it. This is particularly relevant for open fractures.

For open comminuted fractures of the tibial plateau the use of circular frames (like TSF) has markedly reduced infection rates. [2]

The time taken for bones to heal (time to union) varies depending on a number of factors. Open fractures take longer to heal, and infection will delay union. For tibial fractures union is generally achieved after between 3 and 6 months, [3] though time to union can be rather subjective, [4] and the dynamistion process combined with irregular appointments may interfere with these measures.

Infection

TSF pin site with a lot of dried exudate.jpg
Site with a lot of dried exudate that might merit dressing
Taylor spatial frame pin site with weeping exudate.jpg
Site with "weeping" exudate that might merit dressing
Taylor spatial frame pin site with crust.jpg
Site with crust and no exudate: some advice suggests maintaining crust
Pin sites in various states

Infection of the pin sites (points where wires enter the skin) of the TSF is a common complication (estimates are that it affects 20% percent of patients). In extreme cases this can result in osteomylitis which is difficult to treat. However, pin site infections are normally successfully treated with a combination of oral antibiotics, intravenous antibiotics, or removal of the affected pin.[ citation needed ]

Pin sites are classified as percutaneous wounds

Best practice for maintenance of pin sites is unclear and requires more study. [5] Common practice involves the regular cleaning of the pin sites with chlorhexidine gluconate solution (advice varies from every day to every week), regular showering, and dressing of sites that exude liquid with non-woven gauze soaked in chlorhexidine gluconate. This dressing can be held in place with bungs or makeshift clips or by twisting around the wire.

Advice varies as to whether scab tissue or any "crust" surrounding a pin site should be maintained. With some literature arguing that this acts as a barrier to entry, while other literature argues this may increase the risk of infection.

Cost of treatment

The taylor spatial frame is a general tool for fixating and moving bone fragments in a gradual way. This means that costs can vary dramatically.[ citation needed ]

The cost of a frame itself was around 2,500 pounds sterling in 2006, [6] though this cost will vary depending on the number of components in the frame.

Cases involving treatment of nonunion of fracture are complicated and time-consuming with costs of around 30,000 pounds sterling in 2006 [4] and treatment can take between 1 and 2 years. Of these costs about 23,000 pound sterling reflect follow-up outpatient treatment and cost for hospital stays, which can vary dramatically between patients.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Orthopedic surgery</span> Branch of surgery concerned with the musculoskeletal and bones system

Orthopedic surgery or orthopedics is the branch of surgery concerned with conditions involving the musculoskeletal system. Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal trauma, spine diseases, sports injuries, degenerative diseases, infections, tumors, and congenital disorders.

<span class="mw-page-title-main">Bone fracture</span> Physical damage to the continuity of a bone

A bone fracture is a medical condition in which there is a partial or complete break in the continuity of any bone in the body. In more severe cases, the bone may be broken into several fragments, known as a comminuted fracture. A bone fracture may be the result of high force impact or stress, or a minimal trauma injury as a result of certain medical conditions that weaken the bones, such as osteoporosis, osteopenia, bone cancer, or osteogenesis imperfecta, where the fracture is then properly termed a pathologic fracture.

<span class="mw-page-title-main">Maisonneuve fracture</span> Medical condition

The Maisonneuve fracture is a spiral fracture of the proximal third of the fibula associated with a tear of the distal tibiofibular syndesmosis and the interosseous membrane. There is an associated fracture of the medial malleolus or rupture of the deep deltoid ligament of the ankle. This type of injury can be difficult to detect.

<span class="mw-page-title-main">Distal radius fracture</span> Fracture of the radius bone near the wrist

A distal radius fracture, also known as wrist fracture, is a break of the part of the radius bone which is close to the wrist. Symptoms include pain, bruising, and rapid-onset swelling. The ulna bone may also be broken.

<span class="mw-page-title-main">External fixation</span> Surgical treatment procedure used to facilitate healing

External fixation is a surgical treatment wherein Kirschner pins and wires are inserted and affixed into bone and then exit the body to be attached to an external apparatus composed of rings and threaded rods — the Ilizarov apparatus, the Taylor Spatial Frame, and the Octopod External Fixator — which immobilises the damaged limb to facilitate healing. As an alternative to internal fixation, wherein bone-stabilising mechanical components are surgically emplaced in the body of the patient, external fixation is used to stabilize bone tissues and soft tissues at a distance from the site of the injury.

<span class="mw-page-title-main">Ilizarov apparatus</span> Type of external fixation (medical device)

In medicine, the Ilizarov apparatus is a type of external fixation apparatus used in orthopedic surgery to lengthen or to reshape the damaged bones of an arm or a leg; used as a limb-sparing technique for treating complex fractures and open bone fractures; and used to treat an infected non-union of bones, which cannot be surgically resolved. The Ilizarov apparatus corrects angular deformity in a leg, corrects differences in the lengths of the legs of the patient, and resolves osteopathic non-unions; further developments of the Ilizarov apparatus progressed to the development of the Taylor Spatial Frame.

<span class="mw-page-title-main">Avulsion fracture</span> Tearing away of a bone by physical trauma

An avulsion fracture is a bone fracture which occurs when a fragment of bone tears away from the main mass of bone as a result of physical trauma. This can occur at the ligament by the application of forces external to the body or at the tendon by a muscular contraction that is stronger than the forces holding the bone together. Generally muscular avulsion is prevented by the neurological limitations placed on muscle contractions. Highly trained athletes can overcome this neurological inhibition of strength and produce a much greater force output capable of breaking or avulsing a bone.

<span class="mw-page-title-main">Nonunion</span> Failure of a bone to heal after breakage

Nonunion is permanent failure of healing following a broken bone unless intervention is performed. A fracture with nonunion generally forms a structural resemblance to a fibrous joint, and is therefore often called a "false joint" or pseudoarthrosis. The diagnosis is generally made when there is no healing between two sets of medical imaging, such as X-ray or CT scan. This is generally after 6–8 months.

<span class="mw-page-title-main">Kirschner wire</span> Pins used in orthopaedic surgery

Kirschner wires or K-wires or pins are sterilized, sharpened, smooth stainless steel pins. Introduced in 1909 by Martin Kirschner, the wires are now widely used in orthopedics and other types of medical and veterinary surgery. They come in different sizes and are used to hold bone fragments together or to provide an anchor for skeletal traction. The pins are often driven into the bone through the skin using a power or hand drill. They also form part of the Ilizarov apparatus.

<span class="mw-page-title-main">Gavriil Ilizarov</span> Soviet physician (1921–1991)

Gavriil Abramovich Ilizarov was a Soviet physician, known for inventing the Ilizarov apparatus for lengthening limb bones and for the method of surgery named after him, the Ilizarov surgery.

<span class="mw-page-title-main">Ollier disease</span> Medical condition

Ollier disease is a rare sporadic nonhereditary skeletal disorder in which typically benign cartilaginous tumors (enchondromas) develop near the growth plate cartilage. This is caused by cartilage rests that grow and reside within the metaphysis or diaphysis and eventually mineralize over time to form multiple enchondromas. Key signs of the disorder include asymmetry and shortening of the limb as well as an increased thickness of the bone margin. These symptoms are typically first visible during early childhood with the mean age of diagnosis being 13 years of age. Many patients with Ollier disease are prone to develop other malignancies including bone sarcomas that necessitate treatment and the removal of malignant bone neoplasm. Cases in patients with Ollier disease has shown a link to IDH1, IDH2, and PTH1R gene mutations. Currently, there are no forms of treatment for the underlying condition of Ollier disease but complications such as fractures, deformities, malignancies that arise from it can be treated through surgical procedures. The prevalence of this condition is estimated at around 1 in 100,000. It is unclear whether the men or women are more affected by this disorder due to conflicting case studies.

<span class="mw-page-title-main">Open fracture</span> Medical condition

An open fracture, also called a compound fracture, is a type of bone fracture that has an open wound in the skin near the fractured bone. The skin wound is usually caused by the bone breaking through the surface of the skin. Open fractures are emergencies and are often caused by high energy trauma such as road traffic accidents and are associated with a high degree of damage to the bone and nearby soft tissue. An open fracture can be life threatening or limb-threatening due to the risk of a deep infection and/or bleeding. Other complications including a risk of malunion of the bone or nonunion of the bone. The severity of open fractures can vary. For diagnosing and classifying open fractures, Gustilo-Anderson open fracture classification is the most commonly used method. It can also be used to guide treatment, and to predict clinical outcomes. Advanced trauma life support is the first line of action in dealing with open fractures and to rule out other life-threatening condition in cases of trauma. The person is also administered antibiotics for at least 24 hours to reduce the risk of an infection. Cephalosporins are generally the first line of antibiotics. Therapeutic irrigation, wound debridement, early wound closure and bone fixation are the main management of open fractures. All these actions aimed to reduce the risk of infections. The bone that is most commonly injured is the tibia and working-age young men are the group of people who are at highest risk of an open fracture. Older people with osteoporosis and soft-tissue problems are also at risk.

<span class="mw-page-title-main">Scaphoid fracture</span> Fracture of the scaphoid bone in the wrist

A scaphoid fracture is a break of the scaphoid bone in the wrist. Symptoms generally includes pain at the base of the thumb which is worse with use of the hand. The anatomic snuffbox is generally tender and swelling may occur. Complications may include nonunion of the fracture, avascular necrosis of the proximal part of the bone, and arthritis.

<span class="mw-page-title-main">Pigeon toe</span> Medical condition affecting the feet

Pigeon toe, also known as in-toeing, is a condition which causes the toes to point inward when walking. It is most common in infants and children under two years of age and, when not the result of simple muscle weakness, normally arises from underlying conditions, such as a twisted shin bone or an excessive anteversion resulting in the twisting of the thigh bone when the front part of a person's foot is turned in.

<span class="mw-page-title-main">Internal fixation</span> Orthopedic operation to fix bone

Internal fixation is an operation in orthopedics that involves the surgical implementation of implants for the purpose of repairing a bone, a concept that dates to the mid-nineteenth century and was made applicable for routine treatment in the mid-twentieth century. An internal fixator may be made of stainless steel, titanium alloy, or cobalt-chrome alloy. or plastics.

The Octopod Circular External Fixator is a medical device developed to treat bone fractures and deformities. The device consists of 4 main vertical struts between 2 rings and 4 assistant diagonal struts. This 3rd Generation Circular External Fixator contains 8 combined mobile struts from which it derives its octopod name. With the octopod method, the device can reach a wider correction range, thereby solving a major problem of the 2nd Generation Circular External Fixators, that of having to frequently change struts. The previous difficulties in taking manual measurements when using both 1st and the 2nd Generation External Fixators are resolved by using the 3rd Generation Circular External Fixator.

High tibial osteotomy is an orthopaedic surgical procedure which aims to correct a varus deformation with compartmental osteoarthritis. Since the inception of the procedure, advancements to technique, fixation devices, and a better understanding of patient selection has allowed HTO to become more popular in younger, more active patients hoping to combat arthritis. The idea behind the procedure is to realign the weight-bearing line of the knee. By realigning the knee, the force produced from weight-bearing is shifted from the arthritic, medial compartment to the healthy, lateral compartment. This decrease in force or load in the diseased part of the knee joint decreases knee pain and can delay the development or progression of osteoarthritis in the medial compartment.

<span class="mw-page-title-main">Index of trauma and orthopaedics articles</span>

Orthopedic surgery is the branch of surgery concerned with conditions involving the musculoskeletal system. Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal injuries, sports injuries, degenerative diseases, infections, bone tumours, and congenital limb deformities. Trauma surgery and traumatology is a sub-specialty dealing with the operative management of fractures, major trauma and the multiply-injured patient.

Fixation in orthopedics is the process by which an injury is rendered immobile. This may be accomplished by internal fixation, using intramedullary rod, Kirschner wire or dynamic compression plate; or by external fixation, using a spanning external fixator, Taylor Spatial Frame or Ilizarov apparatus.

Bone malrotation refers to the situation that results when a bone heals out of rotational alignment from another bone, or part of bone. It often occurs as the result of a surgical complication after a fracture where intramedullary nailing (IMN) occurs, especially in the femur and tibial bones, but can also occur genetically at birth. The severity of this complication is often neglected due to its complexity to detect and treat, yet if left untreated, bone malrotation can significantly impact regular bodily functioning, and even lead to severe arthritis. Detection throughout history has become more advanced and accurate, ranging from clinical assessment to ultrasounds to CT scans. Treatment can include an osteotomy, a major surgical procedure where bones are cut and realigned correctly, or compensatory methods, where individuals learn to externally or internally rotate their limb to compensate for the rotation. Further research is currently being examined in this area to reduce occurrences of malrotation, including detailed computer navigation to improve visual accuracy during surgery.

References

  1. Eidelman, M; Katzman, A. (October 2008). "Treatment of complex tibial fractures in children with the taylor spatial frame". Orthopedics. 31 (10). PMID   19226013.
  2. Department of Surgery, St. Michael's Hospital and the University of Toronto, ON, Canada. (Dec 2006). "Open reduction and internal fixation compared with circular fixator application for bicondylar tibial plateau fractures. Results of a multicenter, prospective, randomized clinical trial" (PDF). J Bone Joint Surg Am. 88 (12): 2613–23. doi:10.2106/JBJS.E.01416. PMID   17142411.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Barron E, Rambani R, Bailey H, Sharma HK (2013). "Cost implications of the physiotherapy management of complex tibial fractures treated with circular frames". Strategies Trauma Limb Reconstr. 8 (3): 169–71. doi:10.1007/s11751-013-0173-8. PMC   3800517 . PMID   23943063.
  4. 1 2 Patil S, Montgomery R (2006). "Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications". J Bone Joint Surg Br. 88 (7): 928–32. doi: 10.1302/0301-620X.88B7.17639 . PMID   16798998.
  5. Timms, Vincent, Santy-Tomlinson, Hertz. "Guidance on pin site care" (PDF). Royal College of Nursing. Retrieved 15 November 2015.{{cite web}}: CS1 maint: multiple names: authors list (link)
  6. Patil S, Montgomery R (2006). "Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications". J Bone Joint Surg Br. 88 (7): 928–32. doi: 10.1302/0301-620X.88B7.17639 . PMID   16798998.

Further reading