Teapot effect

Last updated

Diagram of tea running down the spout of a teapot Teekanneneffekt.svg
Diagram of tea running down the spout of a teapot

The teapot effect, also known as dribbling, is a fluid dynamics phenomenon that occurs when a liquid being poured from a container runs down the spout or the body of the vessel instead of flowing out in an arc. [1]

Contents

Markus Reiner coined the term "teapot effect" in 1956 to describe the tendency of liquid to dribble down the side of a vessel while pouring. [2] [3] Reiner received his PhD at TU Wien in 1913 and made significant contributions to the development of the study of flow behavior known as rheology. [1] Reiner believed the teapot effect could be explained by Bernoulli's principle, which states that an increase in the speed of a fluid is always accompanied by a decrease in its pressure. When tea is poured from a teapot, the liquid's speed increases as it flows through the narrowing spout. This decrease in pressure was what Reiner thought to cause the liquid to dribble down the side of the pot. [4] [3] However, a 2021 study found the primary cause of the phenomenon to be an interaction of inertia and capillary forces. [3] The study found that the smaller the angle between the container wall and the liquid surface, the more the teapot effect is slowed down. [5]

Research

Around 1950, researchers from the Technion Institute in Haifa (Israel) and from New York University tried to explain this effect scientifically. [6] In fact, there are two phenomena that contribute to this effect: on the one hand, the Bernoulli equation is used to explain it, on the other hand, the adhesion between the liquid and the spout material is also important.

According to the Bernoulli explanation, the liquid is pressed against the inner edge of the spout when pouring out, because the pressure conditions at the end, the edge, change significantly; the surrounding air pressure pushes the liquid towards the spout. With the help of a suitable pot geometry (or a sufficiently high pouring speed) it can be avoided that the liquid reaches the spout and thus triggers the teapot effect. Laws of hydrodynamics (flow theory) describe this situation, the relevant ones are explained in the following sections.

Since adhesion also plays a role, the material of the spout or the type of liquid (water, alcohol or oil, for example) is also relevant for the occurrence of the teapot effect.

The Coandă effect is sometimes mentioned in this context, [7] [8] [9] [10] but it is rarely cited in the scientific literature [8] and is therefore not precisely defined. Often several different phenomena seem to be mixed up in this one.

Continuity equation

In hydrodynamics, the behavior of flowing liquids is illustrated by flow lines. They run in the same direction as the flow itself. If the outflowing liquid hits an edge, the flow is compressed into a smaller cross-section. It only does not break off if the flow rate of liquid particles remains constant, regardless of where an imaginary cross section (perpendicular to the flow) is located. So the same amount of mass must flow in through one cross-sectional area as flows out of another. One can now conclude from this, but also observe in reality, that the flow accelerates at bottlenecks and the streamlines are bundled. This situation describes the continuity equation for non-turbulent flows.

Bernoulli equation

But what happens to the pressure conditions in the flow if you change the flow speed? The scientist Daniel Bernoulli dealt with this question as early as the beginning of the 18th century. Based on the considerations of continuity mentioned above, and incorporating the conservation of energy, he linked the two quantities of pressure and speed. The core statement of the Bernoulli equation is that the pressure in a liquid falls where the velocity increases (and vice versa): Flow according to Bernoulli and Venturi.

Impact

The pressure in the flow is reduced at the edge of the can spout. However, since the air pressure on the outside of the flow is the same everywhere, there is a pressure difference that pushes the liquid to the edge. Depending on the materials used, the outside of the spout is now wetted during the flow process. At this point, additional interfacial forces occur : the liquid runs as a narrow trickle along the spout and can until it detaches from the underside.

The unwanted teapot effect only occurs when pouring slowly and carefully. [6] In fast pouring, the liquid flows out of the spout in an arc without dripping, so it is given a relatively high velocity with which the liquid moves away from the edge (see Torricelli outflow velocity). The pressure difference resulting from the Bernoulli equation is then not sufficient to influence the flow to such an extent that the liquid is pushed around the edge of the spout.

Since the flow conditions can be described mathematically, a critical outflow velocity is also defined. If it falls below when pouring, the liquid flows down the pot; it drips. Theoretically, this speed could be precisely calculated for a specific can geometry, the current air pressure and the fill level of the can, the spout material, the viscosity of the liquid and the pouring angle. Since, apart from the fill level, most of the influencing variables cannot be changed (at least not sufficiently precisely in practice), the only way to avoid the teapot effect is usually to choose a suitable geometry for the pot.

Another phenomenon is the reduction in air pressure between the spout and the jet of liquid due to the entrainment of gas molecules (one-sided water jet pumping effect), so that the air pressure on the opposite side would push the jet of liquid to the spout side. However, under the conditions usually prevailing when pouring tea, this effect will hardly appear.

Consequence

Pot examples Kannen4.jpg
Pot examples

A good jug should, regardless of fashion, have a spout with a tear-off edge (i.e. no rounded edge) to make it more difficult to run around the edge. And – even more important - after the edge, the spout should first lead upwards (regardless of the position in which the jug is held). As a result, the liquid would be forced to flow upwards after going around the edge of the spout when pouring, but this is prevented by gravity. The flow can thus resist wetting even when pouring slowly and the liquid does not reach the downwardly inclined part of the spout and the body of the jug.

The image on the right[ clarification needed ] shows three vessels with poor pouring behavior. Even in a horizontal position, that is standing on the table, the bottom edges of the spouts do not point upwards. [6] Behind are four vessels with good flow characteristics resulting from well formed tips. Here, the liquid rises at the lower edge of the spout at an angle of less than 45°. [6] In part, this only becomes apparent when one considers the normal maximum fill level: the glass carafe on the far right, for example, appears at first glance to be a poor pourer because of its slender neck. However, since such vessels are generally filled at most up to the edge of the round part of the flask, an advantageous rise at the neck is then obtained when pouring horizontally.Upward angle for the liquid when pouring. With the two lower jugs on the right, the high position of the spout (above the maximum filling level) means that the vessel has to be tilted quite a bit before pouring, so that the spout can also be pushed up directly after the edge (against gravity). indicates.

To avoid the teapot effect, the pot can be filled less, so that a larger tilting angle is necessary from the start. However, the effect or the ideal filling level again depends on the can geometry.

The teapot effect does not occur with bottles because the slender neck of the bottle always points upwards when pouring; the current would therefore have to "flow uphill" a long way. [6] Bottle-like containers are therefore often used for liquid chemicals in the laboratory. Certain materials are also used there to prevent dripping, for example glass, which can be easily shaped or even ground to create the sharpest possible edges, or Teflon, for example, which reduces the adhesion effect described above.

Drip catcher

See also

Related Research Articles

<span class="mw-page-title-main">Lift (force)</span> Force perpendicular to flow of surrounding fluid

When a fluid flows around an object, the fluid exerts a force on the object. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direction. Lift conventionally acts in an upward direction in order to counter the force of gravity, but it is defined to act perpendicular to the flow and therefore can act in any direction.

<span class="mw-page-title-main">Pressure</span> Force distributed over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

<span class="mw-page-title-main">Bernoulli's principle</span> Principle relating to fluid dynamics

Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or the fluid's potential energy. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.

<span class="mw-page-title-main">Henri Coandă</span> Romanian inventor (1886–1972)

Henri Marie Coandă was a Romanian inventor, aerodynamics pioneer, and builder of an experimental aircraft, the Coandă-1910, which never flew. He invented a great number of devices, designed a "flying saucer" and discovered the Coandă effect of fluid dynamics.

<span class="mw-page-title-main">Coandă effect</span> Tendency of a fluid jet to stay attached to a convex surface

The Coandă effect is the tendency of a fluid jet to stay attached to a convex surface. Merriam-Webster describes it as "the tendency of a jet of fluid emerging from an orifice to follow an adjacent flat or curved surface and to entrain fluid from the surroundings so that a region of lower pressure develops."

<span class="mw-page-title-main">Teapot</span> Vessel for preparing and serving tea

A teapot is a vessel used for steeping tea leaves or a herbal mix in boiling or near-boiling water, and for serving the resulting infusion which is called tea. It is one of the core components of teaware. Dry tea is available either in tea bags or as loose tea, in which case a tea infuser or tea strainer may be of some assistance, either to hold the leaves as they steep or to catch the leaves inside the teapot when the tea is poured. Teapots usually have an opening with a lid at their top, where the dry tea and hot water are added, a handle for holding by hand and a spout through which the tea is served. Some teapots have a strainer built-in on the inner edge of the spout. A small air hole in the lid is often created to stop the spout from dripping and splashing when tea is poured. In modern times, a thermally insulating cover called a tea cosy may be used to enhance the steeping process or to prevent the contents of the teapot from cooling too rapidly.

<span class="mw-page-title-main">Drip coffee</span> Drink made by pouring hot water onto ground coffee beans

Drip coffee is made by pouring hot water onto ground coffee beans, allowing it to brew. There are several methods for doing this, including using a filter. Terms used for the resulting coffee often reflect the method used, such as drip-brewed coffee, or, somewhat inaccurately, filtered coffee in general. Manually brewed drip coffee is typically referred to as pour-over coffee. Water seeps through the ground coffee, absorbing its constituent chemical compounds, and then passes through a filter. The used coffee grounds are retained in the filter, while the brewed coffee is collected in a vessel such as a carafe or pot.

<span class="mw-page-title-main">Coffee filter</span> Coffee brewing utensil

A coffee filter is a filter used for various coffee brewing methods including but not limited to drip coffee filtering. Filters made of paper (disposable), cloth (reusable), or plastic, metal or porcelain (permanent) are used. Paper and cloth filters require the use of some kind of filter holder, whereas filters made out of other materials may present an integral part of the holder or not, depending on construction. The filter allows the liquid coffee to flow through, but traps the coffee grounds.

<span class="mw-page-title-main">Magnus effect</span> Deflection in the path of a spinning object moving through a fluid

The Magnus effect is an observable phenomenon commonly associated with a spinning object moving through a fluid. A lift force acts on the spinning object. The path of the object may be deflected in a manner not present when the object is not spinning. The deflection can be explained by the difference in pressure of the fluid on opposite sides of the spinning object. The strength of the Magnus effect is dependent on the speed of rotation of the object.

The shower-curtain effect in physics describes the phenomenon of a shower curtain being blown inward when a shower is running. The problem of identifying the cause of this effect has been featured in Scientific American magazine, with several theories given to explain the phenomenon but no definite conclusion.

<span class="mw-page-title-main">Siphon</span> Device involving the flow of liquids through tubes

A siphon is any of a wide variety of devices that involve the flow of liquids through tubes. In a narrower sense, the word refers particularly to a tube in an inverted "U" shape, which causes a liquid to flow upward, above the surface of a reservoir, with no pump, but powered by the fall of the liquid as it flows down the tube under the pull of gravity, then discharging at a level lower than the surface of the reservoir from which it came.

<span class="mw-page-title-main">Venturi effect</span> Reduced pressure caused by a flow restriction in a tube or pipe

The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows through a constricted section of a pipe. The Venturi effect is named after its discoverer, the 18th-century Italian physicist Giovanni Battista Venturi.

<span class="mw-page-title-main">Kettle</span> Vessel used to boil water

A kettle, sometimes called a tea kettle or teakettle, is a device specialized for boiling water, commonly with a lid, spout, and handle. There are two main types: the stovetop kettle, which uses heat from a hob, and the electric kettle, which is a small kitchen appliance with an internal heating element.

<span class="mw-page-title-main">History of fluid mechanics</span>

The history of fluid mechanics is a fundamental strand of the history of physics and engineering. The study of the movement of fluids and the forces that act upon them dates back to pre-history. The field has undergone a continuous evolution, driven by human dependence on water, meteorological conditions and internal biological processes.

<span class="mw-page-title-main">Iodine heptafluoride</span> Chemical compound

Iodine heptafluoride is an interhalogen compound with the chemical formula IF7. It has an unusual pentagonal bipyramidal structure, with D5h symmetry, as predicted by VSEPR theory. The molecule can undergo a pseudorotational rearrangement called the Bartell mechanism, which is like the Berry mechanism but for a heptacoordinated system.

In fluid mechanics, pressure head is the height of a liquid column that corresponds to a particular pressure exerted by the liquid column on the base of its container. It may also be called static pressure head or simply static head.

<span class="mw-page-title-main">Carl Wilhelm Oseen</span> Swedish theoretical physicist (1879–1944)

Carl Wilhelm Oseen was a theoretical physicist in Uppsala and Director of the Nobel Institute for Theoretical Physics in Stockholm.

<span class="mw-page-title-main">Markus Reiner</span> Israeli scientist and engineer

Markus Reiner was an Israeli scientist and a major figure in rheology.

<span class="mw-page-title-main">Tea leaf paradox</span> Fluid dynamics phenomenon

In fluid dynamics, the tea leaf paradox is a phenomenon where tea leaves in a cup of tea migrate to the center and bottom of the cup after being stirred rather than being forced to the edges of the cup, as would be expected in a spiral centrifuge.

<span class="mw-page-title-main">Alcoholic spirits measure</span> Instruments to measure alcohol

Alcoholic spirits measures are instruments designed to measure exact amounts or shots of alcoholic spirits.

References

  1. 1 2 "Why Teapots Always Drip – Scientists Finally Explain the "Teapot Effect"". SciTechDaily . Vienna University of Technology. 2022-01-09. Archived from the original on 2023-01-28. Retrieved 2022-07-02.
  2. Reiner, Markus (September 1956). "The teapot effect...a problem". Physics Today . 9 (9). American Institute of Physics: 16. doi:10.1063/1.3060089 . Retrieved 2023-01-28. (1 page)
  3. 1 2 3 Ouellette, Jennifer (2021-11-10). "Dribble, dribble, dribble — Physicists say they've finally solved the teapot effect—for real this time - Is due to interplay of inertial viscous capillary forces—but gravity's less relevant". Ars Technica . Archived from the original on 2023-01-28. Retrieved 2022-07-02.
  4. Keller, Joseph Bishop (1957). "Teapot Effect" (PDF). Journal of Applied Physics . 28 (8): 859–864. Bibcode:1957JAP....28..859K. doi:10.1063/1.1722875. Archived (PDF) from the original on 2022-03-13. Retrieved 2023-01-28. (6 pages)
  5. Scheichl, Bernhard; Bowles, Robert I.; Pasias, Georgios (2021-11-10) [2021-09-08, 2021-07-01, 2021-05-17, 2020-11-09]. "Developed liquid film passing a smoothed and wedge-shaped trailing edge: small-scale analysis and the 'teapot effect' at large Reynolds numbers". Journal of Fluid Mechanics . 926. Cambridge University Press: A25-1–A25-40, S1–S12. arXiv: 2011.12168 . Bibcode:2021JFM...926A..25S. doi:10.1017/jfm.2021.612. ISSN   0022-1120. S2CID   235444365. Archived from the original on 2023-01-28. Retrieved 2023-01-28. (40+12 pages)
  6. 1 2 3 4 5 Dittmar-Ilgen, Hannelore (2007) [2006, 2004]. "Immer Ärger mit tröpfelnden Kannen". Wie der Kork-Krümel ans Weinglas kommt - Physik für Genießer und Entdecker (in German) (1 ed.). Stuttgart, Germany: S. Hirzel Verlag  [ de ]. pp. 21–25. ISBN   978-3-7776-1440-3. ISBN   978-3-7776-1440-3. (172+4 pages)
  7. Reba, Imants (June 1966). "Applications of the Coanda Effect". Scientific American . Vol. 214, no. 6. pp. 84–92. Bibcode:1966SciAm.214f..84R. doi:10.1038/scientificamerican0666-84. JSTOR   24930967 . Retrieved 2023-01-28. (9 pages)
  8. 1 2 Reiner, Markus (May 1967). "Teapot means Coanda". Letters. Physics Today . 20 (5). American Institute of Physics: 15. Bibcode:1967PhT....20e..15R. doi:10.1063/1.3034300 . Retrieved 2023-01-28. (1 page)
  9. Reiner, Markus (1969). Deformation, Strain and Flow - An Elementary Introduction To Rheology (3 ed.). H. K. Lewis & Co. Ltd. ISBN   0-71860162-9. (347 pages)
  10. Ziegler, Alfred; Wodzinski, Ruth (2001) [2000, 1999]. "Die Physik des Fliegens als Bestandteil eines Unterrichts zur Strömungslehre: Zielsetzungen und Begründungen". Vorträge / Physikertagung, Deutsche Physikalische Gesellschaft, Fachausschuss Didaktik der Physik (Book, CD) (in German). Arbeitsgruppe Didaktik der Physik, Universität Kassel. pp. 549–552. Archived from the original on 2023-01-29. Retrieved 2023-01-29. Coanda-Effekt (bzw. "Kaffeekanneneffekt"-ein Tropfen folgt der Oberfläche) (NB. Calls the effect "coffeepot effect" rather than "teapot effect".)

Further reading