In geometry, the tennis ball theorem states that any smooth curve on the surface of a sphere that divides the sphere into two equal-area subsets without touching or crossing itself must have at least four inflection points, points at which the curve does not consistently bend to only one side of its tangent line. [1] The tennis ball theorem was first published under this name by Vladimir Arnold in 1994, [2] [3] and is often attributed to Arnold, but a closely related result appears earlier in a 1968 paper by Beniamino Segre, and the tennis ball theorem itself is a special case of a theorem in a 1977 paper by Joel L. Weiner. [4] [5] The name of the theorem comes from the standard shape of a tennis ball, whose seam forms a curve that meets the conditions of the theorem; the same kind of curve is also used for the seams on baseballs. [1]
The tennis ball theorem can be generalized to any curve that is not contained in a closed hemisphere. A centrally symmetric curve on the sphere must have at least six inflection points. The theorem is analogous to the four-vertex theorem according to which any smooth closed plane curve has at least four points of extreme curvature.
Precisely, an inflection point of a doubly continuously differentiable () curve on the surface of a sphere is a point with the following property: let be the connected component containing of the intersection of the curve with its tangent great circle at . (For most curves will just be itself, but it could also be an arc of the great circle.) Then, for to be an inflection point, every neighborhood of must contain points of the curve that belong to both of the hemispheres separated by this great circle. The theorem states that every curve that partitions the sphere into two equal-area components has at least four inflection points in this sense. [6]
The tennis ball and baseball seams can be modeled mathematically by a curve made of four semicircular arcs, with exactly four inflection points where pairs of these arcs meet. [7] A great circle also bisects the sphere's surface, and has infinitely many inflection points, one at each point of the curve. However, the condition that the curve divide the sphere's surface area equally is a necessary part of the theorem. Other curves that do not divide the area equally, such as circles that are not great circles, may have no inflection points at all. [1]
One proof of the tennis ball theorem uses the curve-shortening flow, a process for continuously moving the points of the curve towards their local centers of curvature. Applying this flow to the given curve can be shown to preserve the smoothness and area-bisecting property of the curve. Additionally, as the curve flows, its number of inflection points never increases. This flow eventually causes the curve to transform into a great circle, and the convergence to this circle can be approximated by a Fourier series. Because curve-shortening does not change any other great circle, the first term in this series is zero, and combining this with a theorem of Sturm on the number of zeros of Fourier series shows that, as the curve nears this great circle, it has at least four inflection points. Therefore, the original curve also has at least four inflection points. [8] [9]
A generalization of the tennis ball theorem applies to any simple smooth curve on the sphere that is not contained in a closed hemisphere. As in the original tennis ball theorem, such curves must have at least four inflection points. [5] [10] If a curve on the sphere is centrally symmetric, it must have at least six inflection points. [10]
A closely related theorem of Segre (1968) also concerns simple closed spherical curves, on spheres embedded into three-dimensional space. If, for such a curve, is any point of the three-dimensional convex hull of a smooth curve on the sphere that is not a vertex of the curve, then at least four points of the curve have osculating planes passing through . In particular, for a curve not contained in a hemisphere, this theorem can be applied with at the center of the sphere. Every inflection point of a spherical curve has an osculating plane that passes through the center of the sphere, but this might also be true of some other points. [4] [5]
This theorem is analogous to the four-vertex theorem, that every smooth simple closed curve in the plane has four vertices (extreme points of curvature). It is also analogous to a theorem of August Ferdinand Möbius that every non-contractible smooth curve in the projective plane has at least three inflection points. [2] [9]
A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE. The Möbius strip is a non-orientable surface, meaning that within it one cannot consistently distinguish clockwise from counterclockwise turns. Every non-orientable surface contains a Möbius strip.
In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K(σp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.
In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,
In mathematics, two functions have a contact of order k if, at a point P, they have the same value and their first k derivatives are equal. This is an equivalence relation, whose equivalence classes are generally called jets. The point of osculation is also called the double cusp. Contact is a geometric notion; it can be defined algebraically as a valuation.
In mathematics, the witch of Agnesi is a cubic plane curve defined from two diametrically opposite points of a circle.
In geometry, a curve of constant width is a simple closed curve in the plane whose width is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.
Richard Streit Hamilton was an American mathematician who served as the Davies Professor of Mathematics at Columbia University.
In differential geometry, Fenchel's theorem is an inequality on the total absolute curvature of a closed smooth space curve, stating that it is always at least . Equivalently, the average curvature is at least , where is the length of the curve. The only curves of this type whose total absolute curvature equals and whose average curvature equals are the plane convex curves. The theorem is named after Werner Fenchel, who published it in 1929.
In geometry, the four-vertex theorem states that the curvature along a simple, closed, smooth plane curve has at least four local extrema. The name of the theorem derives from the convention of calling an extreme point of the curvature function a vertex. This theorem has many generalizations, including a version for space curves where a vertex is defined as a point of vanishing torsion.
In the geometry of plane curves, a vertex is a point of where the first derivative of curvature is zero. This is typically a local maximum or minimum of curvature, and some authors define a vertex to be more specifically a local extremum of curvature. However, other special cases may occur, for instance when the second derivative is also zero, or when the curvature is constant. For space curves, on the other hand, a vertex is a point where the torsion vanishes.
In geometry, a vertex is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices.
In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.
In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions. Important subclasses of convex curves include the closed convex curves, the smooth curves that are convex, and the strictly convex curves, which have the additional property that each supporting line passes through a unique point of the curve.
In mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, and arc length evolution.
In differential geometry, the total absolute curvature of a smooth curve is a number defined by integrating the absolute value of the curvature around the curve. It is a dimensionless quantity that is invariant under similarity transformations of the curve, and that can be used to measure how far the curve is from being a convex curve.
In differential geometry, the Tait–Kneser theorem states that, if a smooth plane curve has monotonic curvature, then the osculating circles of the curve are disjoint and nested within each other. The logarithmic spiral or the pictured Archimedean spiral provide examples of curves whose curvature is monotonic for the entire curve. This monotonicity cannot happen for a simple closed curve but for such curves the theorem can be applied to the arcs of the curves between its vertices.
Extrinsic Geometric Flows is an advanced mathematics textbook that overviews geometric flows, mathematical problems in which a curve or surface moves continuously according to some rule. It focuses on extrinsic flows, in which the rule depends on the embedding of a surface into space, rather than intrinsic flows such as the Ricci flow that depend on the internal geometry of the surface and can be defined without respect to an embedding.