Tennis ball theorem

Last updated
A tennis ball Closeup of a tennis ball (2).jpg
A tennis ball

In geometry, the tennis ball theorem states that any smooth curve on the surface of a sphere that divides the sphere into two equal-area subsets without touching or crossing itself must have at least four inflection points, points at which the curve does not consistently bend to only one side of its tangent line. [1] The tennis ball theorem was first published under this name by Vladimir Arnold in 1994, [2] [3] and is often attributed to Arnold, but a closely related result appears earlier in a 1968 paper by Beniamino Segre, and the tennis ball theorem itself is a special case of a theorem in a 1977 paper by Joel L. Weiner. [4] [5] The name of the theorem comes from the standard shape of a tennis ball, whose seam forms a curve that meets the conditions of the theorem; the same kind of curve is also used for the seams on baseballs. [1]

Contents

Statement

Precisely, an inflection point of a doubly continuously differentiable () curve on the surface of a sphere is a point with the following property: let be the connected component containing of the intersection of the curve with its tangent great circle at . (For most curves will just be itself, but it could also be an arc of the great circle.) Then, for to be an inflection point, every neighborhood of must contain points of the curve that belong to both of the hemispheres separated by this great circle. The theorem states that every curve that partitions the sphere into two equal-area components has at least four inflection points in this sense. [6]

Examples

The tennis ball and baseball seams can be modeled mathematically by a curve made of four semicircular arcs, with exactly four inflection points where pairs of these arcs meet. [7] A great circle also bisects the sphere's surface, and has infinitely many inflection points, one at each point of the curve. However, the condition that the curve divide the sphere's surface area equally is a necessary part of the theorem. Other curves that do not divide the area equally, such as circles that are not great circles, may have no inflection points at all. [1]

Proof by curve shortening

One proof of the tennis ball theorem uses the curve-shortening flow, a process for continuously moving the points of the curve towards their local centers of curvature. Applying this flow to the given curve can be shown to preserve the smoothness and area-bisecting property of the curve. Additionally, as the curve flows, its number of inflection points never increases. This flow eventually causes the curve to transform into a great circle, and the convergence to this circle can be approximated by a Fourier series. Because curve-shortening does not change any other great circle, the first term in this series is zero, and combining this with a theorem of Sturm on the number of zeros of Fourier series shows that, as the curve nears this great circle, it has at least four inflection points. Therefore, the original curve also has at least four inflection points. [8] [9]

A generalization of the tennis ball theorem applies to any simple smooth curve on the sphere that is not contained in a closed hemisphere. As in the original tennis ball theorem, such curves must have at least four inflection points. [5] [10] If a curve on the sphere is centrally symmetric, it must have at least six inflection points. [10]

A closely related theorem of Segre (1968) also concerns simple closed spherical curves. If, for such a curve, is any point of the convex hull of a smooth curve on the sphere that is not a vertex of the curve, then at least four points of the curve have osculating planes passing through . In particular, for a curve not contained in a hemisphere, this theorem can be applied with at the center of the sphere. Every inflection point of a spherical curve has an osculating plane that passes through the center of the sphere, but this might also be true of some other points. [4] [5]

This theorem is analogous to the four-vertex theorem, that every smooth simple closed curve in the plane has four vertices (extreme points of curvature). It is also analogous to a theorem of August Ferdinand Möbius that every non-contractible smooth curve in the projective plane has at least three inflection points. [2] [9]

Related Research Articles

Sphere Geometrical object that is the surface of a ball

A sphere is a geometrical object in three-dimensional space that is the surface of a ball.

Surface (topology) Two-dimensional manifold

In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solids; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.

Great circle

A great circle, also known as an orthodrome, of a sphere is the intersection of the sphere and a plane that passes through the center point of the sphere. A great circle is the largest circle that can be drawn on any given sphere. Any diameter of any great circle coincides with a diameter of the sphere, and therefore all great circles have the same center and circumference as each other. This special case of a circle of a sphere is in opposition to a small circle, that is, the intersection of the sphere and a plane that does not pass through the center. Every circle in Euclidean 3-space is a great circle of exactly one sphere.

Rectangle Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as an equiangular quadrilateral, since equiangular means that all of its angles are equal. It can also be defined as a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term oblong is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

Hyperbolic geometry Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

In mathematics, two functions have a contact of order k if, at a point P, they have the same value and k equal derivatives. This is an equivalence relation, whose equivalence classes are generally called jets. The point of osculation is also called the double cusp. Contact is a geometric notion; it can be defined algebraically as a valuation.

Witch of Agnesi Cubic plane curve

In mathematics, the witch of Agnesi is a cubic plane curve defined from two diametrically opposite points of a circle. It gets its name from Italian mathematician Maria Gaetana Agnesi, and from a mistranslation of an Italian word for a sailing sheet. Before Agnesi, the same curve was studied by Fermat, Grandi, and Newton.

Curve of constant width Convex planar shape whose width is the same regardless of the orientation of the curve

In geometry, a curve of constant width is a simple closed curve in the plane whose width is the same in all directions, regardless of the slope of the lines. The shape bounded by a curve of constant width is a body of constant width, sometimes called an orbiform, a name given to them by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.

Osculating circle circle of immediate corresponding curvature of a curve at a point

In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p. Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans by Leibniz.

Poncelets closure theorem Theorem of 2D geometry

In geometry, Poncelet's porism, sometimes referred to as Poncelet's closure theorem, states that whenever a polygon is inscribed in one conic section and circumscribes another one, the polygon must be part of an infinite family of polygons that are all inscribed in and circumscribe the same two conics. It is named after French engineer and mathematician Jean-Victor Poncelet, who wrote about it in 1822; however, the triangular case was discovered significantly earlier, in 1746 by William Chapple.

Four-vertex theorem Every simple closed smooth plane curve has at least 4 points of locally extreme curvature

The classical four-vertex theorem states that the curvature function of a simple, closed, smooth plane curve has at least four local extrema. The name of the theorem derives from the convention of calling an extreme point of the curvature function a vertex. This theorem has many generalizations, including a version for space curves where a vertex is defined as a point of vanishing torsion.

Vertex (curve)

In the geometry of planar curves, a vertex is a point of where the first derivative of curvature is zero. This is typically a local maximum or minimum of curvature, and some authors define a vertex to be more specifically a local extreme point of curvature. However, other special cases may occur, for instance when the second derivative is also zero, or when the curvature is constant. For space curves, on the other hand, a vertex is a point where the torsion vanishes.

In geometry, a vertex, often denoted by letters such as , , , , is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices.

In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.

Circle packing theorem Describes the possible tangency relations between circles with disjoint interiors

The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:

In differential geometry and dynamical systems, a closed geodesic on a Riemannian manifold is a geodesic that returns to its starting point with the same tangent direction. It may be formalized as the projection of a closed orbit of the geodesic flow on the tangent space of the manifold.

Curve-shortening flow A process that shrinks a smooth curve in the Euclidean plane based on its curvature

In mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, and arc length evolution.

In differential geometry the theorem of the three geodesics states that every Riemannian manifold with the topology of a sphere has at least three closed geodesics that form simple closed curves. The result can also be extended to quasigeodesics on a convex polyhedron.

Tait–Kneser theorem If a smooth plane curve has monotonic curvature, then its osculating circles are nested

In differential geometry, the Tait–Kneser theorem states that, if a smooth plane curve has monotonic curvature, then the osculating circles of the curve are disjoint and nested within each other. The logarithmic spiral or the pictured Archimedean spiral provide examples of curves whose curvature is monotonic for the entire curve. This monotonicity cannot happen for a simple closed curve but for such curves the theorem can be applied to the arcs of the curves between its vertices.

References

  1. 1 2 3 Chamberland, Marc (2015), "The Tennis Ball Theorem", Single digits: In praise of small numbers, Princeton University Press, Princeton, NJ, p. 114, doi:10.1515/9781400865697, ISBN   978-0-691-16114-3, MR   3328722
  2. 1 2 Martinez-Maure, Yves (1996), "A note on the tennis ball theorem", American Mathematical Monthly , 103 (4): 338–340, doi:10.2307/2975192, MR   1383672
  3. Arnol'd, V. I. (1994), "20. The tennis ball theorem", Topological invariants of plane curves and caustics, University Lecture Series, 5, Providence, RI: American Mathematical Society, pp.  53–58, doi:10.1090/ulect/005, ISBN   0-8218-0308-5, MR   1286249
  4. 1 2 Segre, Beniamino (1968), "Alcune proprietà differenziali in grande delle curve chiuse sghembe", Rendiconti di Matematica, 1: 237–297, MR   0243466
  5. 1 2 3 Weiner, Joel L. (1977), "Global properties of spherical curves", Journal of Differential Geometry, 12 (3): 425–434, MR   0514446 . For the tennis ball theorem (applicable more generally to curves that are not contained in a single hemisphere), see Theorem 2, p. 427
  6. Thorbergsson, Gudlaugur; Umehara, Masaaki (1999), "A unified approach to the four vertex theorems II", in Tabachnikov, Serge (ed.), Differential and Symplectic Topology of Knots and Curves, Amer. Math. Soc. Transl. Ser. 2, 190, Amer. Math. Soc., Providence, RI, pp. 229–252, doi:10.1090/trans2/190/12, MR   1738398 . See in particular pp. 242–243.
  7. Juillet, Nicolas (April 5, 2013), "Voyage sur une balle de tennis", Images des mathématiques (in French), CNRS
  8. Ovsienko, V.; Tabachnikov, S. (2005), Projective differential geometry old and new: From the Schwarzian derivative to the cohomology of diffeomorphism groups, Cambridge Tracts in Mathematics, 165, Cambridge: Cambridge University Press, p. 101, ISBN   0-521-83186-5, MR   2177471
  9. 1 2 Angenent, S. (1999), "Inflection points, extatic points and curve shortening" (PDF), Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, Dordrecht: Kluwer Acad. Publ., pp. 3–10, MR   1720878
  10. 1 2 Pak, Igor (April 20, 2010), "Theorems 21.22–21.24, p. 203", Lectures on Discrete and Polyhedral Geometry