Ternary relation

Last updated

In mathematics, a ternary relation or triadic relation is a finitary relation in which the number of places in the relation is three. Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place.

Contents

Just as a binary relation is formally defined as a set of pairs, i.e. a subset of the Cartesian product A × B of some sets A and B, so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A, B and C.

An example of a ternary relation in elementary geometry can be given on triples of points, where a triple is in the relation if the three points are collinear. Another geometric example can be obtained by considering triples consisting of two points and a line, where a triple is in the ternary relation if the two points determine (are incident with) the line.

Examples

Binary functions

A function f : A × BC in two variables, mapping two values from sets A and B, respectively, to a value in C associates to every pair (a,b) in A × B an element f(a, b) in C. Therefore, its graph consists of pairs of the form ((a, b), f(a, b)). Such pairs in which the first element is itself a pair are often identified with triples. This makes the graph of f a ternary relation between A, B and C, consisting of all triples (a, b, f(a, b)), satisfying a in A, b in B, and f(a, b) in C.

Cyclic orders

Given any set A whose elements are arranged on a circle, one can define a ternary relation R on A, i.e. a subset of A3 = A × A × A, by stipulating that R(a, b, c) holds if and only if the elements a, b and c are pairwise different and when going from a to c in a clockwise direction one passes through b. For example, if A = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } represents the hours on a clock face, then R(8, 12, 4) holds and R(12, 8, 4) does not hold.

Betweenness relations

Ternary equivalence relation

Congruence relation

The ordinary congruence of arithmetics

which holds for three integers a, b, and m if and only if m divides ab, formally may be considered as a ternary relation. However, usually, this instead is considered as a family of binary relations between the a and the b, indexed by the modulus m. For each fixed m, indeed this binary relation has some natural properties, like being an equivalence relation; while the combined ternary relation in general is not studied as one relation.

Typing relation

A typing relationΓ ⊢ e:σ indicates that e is a term of type σ in context Γ, and is thus a ternary relation between contexts, terms and types.

Schröder rules

Given homogeneous relations A, B, and C on a set, a ternary relation (A, B, C) can be defined using composition of relations AB and inclusion ABC. Within the calculus of relations each relation A has a converse relation AT and a complement relation A. Using these involutions, Augustus De Morgan and Ernst Schröder showed that (A, B, C) is equivalent to (C, BT, A) and also equivalent to (AT, C, B). The mutual equivalences of these forms, constructed from the ternary relation (A, B, C), are called the Schröder rules. [1]

Related Research Articles

In mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of elements x from X and y from Y. It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element x is related to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. A binary relation is the most studied special case n = 2 of an n-ary relation over sets X1, ..., Xn, which is a subset of the Cartesian product

<span class="mw-page-title-main">Equivalence relation</span> Mathematical concept for comparing objects

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive).

In mathematics, a finitary relation over a sequence of sets X1, ..., Xn is a subset of the Cartesian product X1 × ... × Xn; that is, it is a set of n-tuples (x1, ..., xn), each being a sequence of elements xi in the corresponding Xi. Typically, the relation describes a possible connection between the elements of an n-tuple. For example, the relation "x is divisible by y and z" consists of the set of 3-tuples such that when substituted to x, y and z, respectively, make the sentence true.

<span class="mw-page-title-main">Partially ordered set</span> Mathematical set with an ordering

In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word partial is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

<span class="mw-page-title-main">Graph of a function</span> Representation of a mathematical function

In mathematics, the graph of a function is the set of ordered pairs , where In the common case where and are real numbers, these pairs are Cartesian coordinates of points in a plane and often form a curve. The graphical representation of the graph of a function is also known as a plot.

Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary.

<span class="mw-page-title-main">Cyclic order</span> Alternative mathematical ordering

In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected. Dropping the "connected" requirement results in a partial cyclic order.

Chu spaces generalize the notion of topological space by dropping the requirements that the set of open sets be closed under union and finite intersection, that the open sets be extensional, and that the membership predicate be two-valued. The definition of continuous function remains unchanged other than having to be worded carefully to continue to make sense after these generalizations.

In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation. The motivating example of a relation algebra is the algebra 2X 2 of all binary relations on a set X, that is, subsets of the cartesian square X2, with RS interpreted as the usual composition of binary relations R and S, and with the converse of R as the converse relation.

<span class="mw-page-title-main">Lexicographic product of graphs</span>

In graph theory, the lexicographic product or (graph) compositionGH of graphs G and H is a graph such that

Tibor Šalát was a Slovak mathematician, professor of mathematics, and Doctor of Mathematics who specialized in number theory and real analysis. He was the author and co-author of undergraduate and graduate textbooks in mathematics, mostly in Slovak. And most of his scholarly papers have been published in various scientific journals.

In mathematics, a homogeneous relation on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people.

In mathematics, a regular matroid is a matroid that can be represented over all fields.

<span class="mw-page-title-main">Cartesian product</span> Mathematical set formed from two given sets

In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. In terms of set-builder notation, that is

In mathematics, a cyclically ordered group is a set with both a group structure and a cyclic order, such that left and right multiplication both preserve the cyclic order.

In mathematics, a partial cyclic order is a ternary relation that generalizes a cyclic order in the same way that a partial order generalizes a linear order.

In matroid theory, a binary matroid is a matroid that can be represented over the finite field GF(2). That is, up to isomorphism, they are the matroids whose elements are the columns of a (0,1)-matrix and whose sets of elements are independent if and only if the corresponding columns are linearly independent in GF(2).

In mathematics, equivalent definitions are used in two somewhat different ways. First, within a particular mathematical theory, a notion may have more than one definition. These definitions are equivalent in the context of a given mathematical structure. Second, a mathematical structure may have more than one definition.

<span class="mw-page-title-main">Locally linear graph</span> Graph where every edge is in one triangle

In graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs. Their triangles form the hyperedges of triangle-free 3-uniform linear hypergraphs and the blocks of certain partial Steiner triple systems, and the locally linear graphs are exactly the Gaifman graphs of these hypergraphs or partial Steiner systems.

References

  1. Schmidt, Gunther; Ströhlein, Thomas (1993), Relations and Graphs, Springer books, pp. 15–19

Further reading