Tetrahedral hypothesis

Last updated

The tetrahedral hypothesis is an obsolete scientific theory attempting to explain the arrangement of the Earth's continents and oceans by referring to the geometry of a tetrahedron. Although it was a historically interesting theory in the late 19th and early 20th century, it was superseded by the concepts of continental drift and modern plate tectonics. The theory was first proposed by William Lowthian Green in 1875. [1]

Contents

Theory

This idea, described as ‘"ingenious" by geologist Arthur Holmes, [2] is now of historical interest only, being finally refuted by that same Holmes (see reference 7). It attempted to explain apparent anomalies in the distribution of land and water on the Earth's surface: [3]

To understand its appeal, consider the "regular solids": the sphere and the 5-member set of Platonic Solids. The solid with the lowest number of sides is the tetrahedron (four equilateral triangles); progressing through the hexahedron or cube, the octahedron, the dodecahedron and the icosahedron (20 sides), the sphere can be considered to have an infinite number of sides. All six regular solids share many symmetries.

Now, for each regular solid, we may relate its surface area and volume by the equation:

where k is a characteristic of each solid, V its volume, and A its area. As we traverse the set in order of increasing number of faces, we find that k increases for each member; it is 0.0227 for a tetrahedron and 0.0940 for a sphere. Thus the tetrahedron is the regular solid with the largest surface area for a given volume, and makes a reasonable endpoint for a shrinking spherical Earth. [4]

History

Illustration of Tetrahedral hypothesis by William Lowthian Green from 1875 Tetrahedral hypothesis.jpg
Illustration of Tetrahedral hypothesis by William Lowthian Green from 1875

The theory was first proposed by William Lowthian Green in 1875. [1] It was still popular in 1917 when summarized as:

"The law of least action … demands that the somewhat rigid crustal portion of the earth keep in contact with the lessening interior with the least possible readjustment of its surface. … a shrinking sphere tends by the law of least action to collapse into a tetrahedron, or a tetra-hedroid, a sphere marked by four equal and equidistant triangular projections; and the earth with its three about equal and equidistant double continental masses triangular southward with three intervening depressed oceans triangular northward, its northern ocean and southern continent, with land everywhere antipodal to water, realizes the tetrahedroid status remarkably.“ [5]

This is suggesting that a cooling spherical Earth might have shrunk to form a tetrahedron, with its vertices and edges forming the continents, and four oceans (Pacific Ocean, Atlantic Ocean, Indian Ocean and Arctic Ocean) on its faces.

By 1915 German Alfred Wegener (1880–1930) had proposed in his continental drift theory that land masses moved great distances over the Earth's history. Wegener was also at first met with hostile reactions. [6] By the mid-1920s Holmes had developed theories on what could cause the drift. [7] [8] The plate tectonics theory is now generally accepted to explain the dynamic nature of the Earth's surface; the tetrahedral shape plays no special role in modern theories. [9] Explanations of details such as water to land ratios, the precise shape of continents and their sizes continue to be developed.

Related Research Articles

Continental drift is the hypothesis, originating in the early 20th century, that Earth's continents move or drift relative to each other over geologic time. The hypothesis of continental drift has since been validated and incorporated into the science of plate tectonics, which studies the movement of the continents as they ride on plates of the Earth's lithosphere.

<span class="mw-page-title-main">Plate tectonics</span> Movement of Earths lithosphere

Plate tectonics is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with four faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Land bridge</span> Connection between two land form bodies

In biogeography, a land bridge is an isthmus or wider land connection between otherwise separate areas, over which animals and plants are able to cross and colonize new lands. A land bridge can be created by marine regression, in which sea levels fall, exposing shallow, previously submerged sections of continental shelf; or when new land is created by plate tectonics; or occasionally when the sea floor rises due to post-glacial rebound after an ice age.

Lemuria, or Limuria, was a continent proposed in 1864 by zoologist Philip Sclater, theorized to have sunk beneath the Indian Ocean, later appropriated by occultists in supposed accounts of human origins. The theory was discredited with the discovery of plate tectonics and continental drift in the 20th century.

<span class="mw-page-title-main">Paleomagnetism</span> Study of Earths magnetic field in past

Paleomagnetism is the study of prehistoric Earth's magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called paleomagnetists.

<span class="mw-page-title-main">Alfred Wegener</span> German climatologist and geophysicist (1880–1930)

Alfred Lothar Wegener was a German climatologist, geologist, geophysicist, meteorologist, and polar researcher.

In hydrology, an oceanic basin (or ocean basin) is anywhere on Earth that is covered by seawater. Geologically, most of the ocean basins are large geologic basins that are below sea level.

<span class="mw-page-title-main">Expanding Earth</span> Historic theory in geology

The expanding Earth or growing Earth was a hypothesis attempting to explain the position and relative movement of continents by increase in the volume of Earth. With the recognition of plate tectonics in 20th century, the idea has been abandoned.

<span class="mw-page-title-main">Samuel Warren Carey</span> Australian geologist

Samuel Warren Carey AO was an Australian geologist and a professor at the University of Tasmania. He was an early advocate of the theory of continental drift. His work on plate tectonics reconstructions led him to develop the Expanding Earth hypothesis.

<span class="mw-page-title-main">History of geology</span>

The history of geology is concerned with the development of the natural science of geology. Geology is the scientific study of the origin, history, and structure of the Earth.

<span class="mw-page-title-main">Frank Bursley Taylor</span> American geologist (1860 – 1938)

Frank Bursley Taylor (1860–1938) was an American geologist.

<span class="mw-page-title-main">Geological history of Earth</span> The sequence of major geological events in Earths past

The geological history of the Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

<span class="mw-page-title-main">Pangaea</span> Supercontinent from the late Paleozoic to early Mesozoic eras

Pangaea or Pangea was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. In contrast to the present Earth and its distribution of continental mass, Pangaea was C-shaped, with the bulk of its mass stretching between Earth's northern and southern polar regions and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and the first to be reconstructed by geologists.

Polflucht is a geophysical concept invoked in 1922 by Alfred Wegener to explain his ideas of continental drift.

The evolution of tectonophysics is closely linked to the history of the continental drift and plate tectonics hypotheses. The continental drift/ Airy-Heiskanen isostasy hypothesis had many flaws and scarce data. The fixist/ Pratt-Hayford isostasy, the contracting Earth and the expanding Earth concepts had many flaws as well.

<span class="mw-page-title-main">William Lowthian Green</span> English adventurer and merchant

William Lowthian Green was an English adventurer and merchant who later became cabinet minister in the Kingdom of Hawaii. As an amateur geologist, he published a theory of the formation of the Earth called the tetrahedral hypothesis.

<span class="mw-page-title-main">Jack Oliver (scientist)</span> American scientist

John "Jack" Ertle Oliver was an American scientist. Oliver, who earned his PhD at Columbia University in 1953, studied earthquakes and ultimately provided seismic evidence supporting plate tectonics. In the 1960s, Oliver and his former graduate student, Bryan Isacks, set up seismographic stations in the South Pacific to record earthquake activity, and the data collected led to the insight that part of the ocean floor was being pushed downward.

The evolution of tectonophysics is closely linked to the history of the continental drift and plate tectonics hypotheses. The continental drift/ Airy-Heiskanen isostasy hypothesis had many flaws and scarce data. The fixist/ Pratt-Hayford isostasy, the contracting Earth and the expanding Earth concepts had many flaws as well.

Ridge push is a proposed driving force for plate motion in plate tectonics that occurs at mid-ocean ridges as the result of the rigid lithosphere sliding down the hot, raised asthenosphere below mid-ocean ridges. Although it is called ridge push, the term is somewhat misleading; it is actually a body force that acts throughout an ocean plate, not just at the ridge, as a result of gravitational pull. The name comes from earlier models of plate tectonics in which ridge push was primarily ascribed to upwelling magma at mid-ocean ridges pushing or wedging the plates apart.

References

  1. 1 2 William Lowthian Green (1875). Vestiges of the molten globe, as exhibited in the figure of the earth, volcanic action and physiography. London: E. Stanford. Bibcode:1875vmge.book.....G. OCLC   3571917.
  2. Arthur Holmes (1965) [1944]. Principles of physical geology . Nelson. p.  32. ISBN   978-0-17-448020-4.
  3. A. Z. Bukhari (2005). "Continental Drift". Encyclopedia of nature of geography. Anmol Publications PVT. Limited. pp. 109–113. ISBN   978-81-261-2443-5.
  4. Principles of Physical Geography. APH Publishing. 2004. pp. 84–85. ISBN   978-81-7648-731-3.
  5. Benjamin Kendall Emerson (1917). "Tetrahedral Deformations and Intercontinental Torsions". Proceedings, American Philosophical Society. Vol. 56, no. 6. American Philosophical Society. pp. 445–472. ISBN   978-1-4223-7253-1.
  6. "Alfred Wegener (1880-1930)". University of California Museum of Paleontology web site. University of California. 2006. Retrieved August 4, 2010.
  7. Arthur Holmes (June 6, 1925). "The Origin of the Continents". Nature. 115 (2901): 873–874. Bibcode:1925Natur.115..873H. doi:10.1038/115873a0. S2CID   4066330.
  8. Arthur Holmes (September 22, 1928). "Theory of Continental Drift: a Symposium on the Origin and Movement of Land Masses, both Inter-Continental and Intra-Continental, as proposed by Alfred Wegener". Nature. 122 (3073): 431–433. Bibcode:1928Natur.122..431H. doi:10.1038/122431a0. S2CID   4138562.
  9. "Plate Tectonics: The Rocky History of an Idea". University of California Museum of Paleontology web site. University of California. 2006. Retrieved August 4, 2010.

Further reading