The Dialectical Biologist

Last updated
The Dialectical Biologist
The Dialectical Biologist.jpg
Cover of the first edition
Authors Richard Levins
Richard Lewontin
CountryUnited States
LanguageEnglish
Subject Biology
Publisher Harvard University Press
Publication date
1985
Media typePrint (Hardcover and Paperback)
Pages336
ISBN 978-0674202832

The Dialectical Biologist is a 1985 book by the ecologist Richard Levins and the biologist Richard Lewontin, in which the authors sketch a dialectical approach to biology. [1] They see "dialectics" more as a set of questions to ask about biological research, a weapon against dogmatism, than as a set of pre-determined answers.

They focus on the (dialectical) relationship between the "whole" (or totality) and the "parts." "Part makes whole, and whole makes part". [2] That is, a biological system of some kind consists of a collection of heterogeneous parts. All of these contribute to the character of the whole, as in reductionist thinking. On the other hand, the whole has an existence independent of the parts and feeds back to affect and determine the nature of the parts. This back-and-forth (dialectic) of causation implies a dynamic process.

For example, Darwinian evolution points to the competition of a variety of species, each with heterogeneous members, within a given environment. This leads to changing species and even to new species arising. A dialectical biologist fully accepts this picture then looks for ways in which the competing creatures (which serve as the internal conflicts in the environment) lead to changes. The changes manifest in the creatures themselves, through the creatures embracing biological adaptations that provide them with advantages, and in the environment itself, as when the action of microbes encourages the erosion of rocks. Further, each species is part of the "environment" of all the others.

Related Research Articles

Gaia philosophy is a broadly inclusive term for relating concepts about, humanity as an effect of the life of this planet.

<span class="mw-page-title-main">Marine biology</span> Scientific study of organisms that live in the ocean

Marine biology is the scientific study of the biology of marine life, organisms in the sea. Given that in biology many phyla, families and genera have some species that live in the sea and others that live on land, marine biology classifies species based on the environment rather than on taxonomy.

<span class="mw-page-title-main">Systematics</span> Branch of biology

Systematics is the study of the diversification of living forms, both past and present, and the relationships among living things through time. Relationships are visualized as evolutionary trees. Phylogenies have two components: branching order and branch length. Phylogenetic trees of species and higher taxa are used to study the evolution of traits and the distribution of organisms (biogeography). Systematics, in other words, is used to understand the evolutionary history of life on Earth.

<span class="mw-page-title-main">Richard Lewontin</span> American evolutionary biologist and mathematician (1929–2021)

Richard Charles Lewontin was an American evolutionary biologist, mathematician, geneticist, and social commentator. A leader in developing the mathematical basis of population genetics and evolutionary theory, he applied techniques from molecular biology, such as gel electrophoresis, to questions of genetic variation and evolution.

<span class="mw-page-title-main">Evolutionary biology</span> Study of the processes that produced the diversity of life

Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution holds that all species are related and gradually change over generations. In a population, the genetic variations affect the phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed onto their offspring. Some examples of evolution in species over many generations are the peppered moth and flightless birds. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology.

<span class="mw-page-title-main">Lysenkoism</span> Pseudoscientific Soviet biological theory

Lysenkoism was a political campaign led by Soviet biologist Trofim Lysenko against genetics and science-based agriculture in the mid-20th century, rejecting natural selection in favour of a form of Lamarckism, as well as expanding upon the techniques of vernalization and grafting.

<span class="mw-page-title-main">Niche construction</span> Process by which an organism shapes its environment

Niche construction is the process by which an organism alters its own local environment. These alterations can be a physical change to the organism’s environment or encompass when an organism actively moves from one habitat to another to experience a different environment. Examples of niche construction include the building of nests and burrows by animals, and the creation of shade, influencing of wind speed, and alternation of nutrient cycling by plants. Although these alterations are often beneficial to the constructor, they are not always.

<i>Genetics and the Origin of Species</i> 1937 book by Theodosius Dobzhansky

Genetics and the Origin of Species is a 1937 book by the Ukrainian-American evolutionary biologist Theodosius Dobzhansky. It is regarded as one of the most important works of modern synthesis and was one of the earliest. The book popularized the work of population genetics to other biologists and influenced their appreciation for the genetic basis of evolution. In his book, Dobzhansky applied the theoretical work of Sewall Wright (1889–1988) to the study of natural populations, allowing him to address evolutionary problems in a novel way during his time. Dobzhansky implements theories of mutation, natural selection, and speciation throughout his book to explain the habits of populations and the resulting effects on their genetic behavior. The book explains evolution in depth as a process over time that accounts for the diversity of all life on Earth. The study of evolution was present, but greatly neglected at the time. Dobzhansky illustrates that evolution regarding the origin and nature of species during this time in history was deemed mysterious, but had expanding potential for progress to be made in its field.

<i>Not in Our Genes</i> 1984 book by Richard Lewontin, Steven Rose, and Leon Kamin

Not in Our Genes: Biology, Ideology and Human Nature is a 1984 book by the evolutionary geneticist Richard Lewontin, the neurobiologist Steven Rose, and the psychologist Leon Kamin, in which the authors criticize sociobiology and genetic determinism and advocate a socialist society. Its themes include the relationship between biology and society, the nature versus nurture debate, and the intersection of science and ideology.

Devolution, de-evolution, or backward evolution is the notion that species can revert to supposedly more primitive forms over time. The concept relates to the idea that evolution has a purpose (teleology) and is progressive (orthogenesis), for example that feet might be better than hooves or lungs than gills. However, evolutionary biology makes no such assumptions, and natural selection shapes adaptations with no foreknowledge of any kind. It is possible for small changes to be reversed by chance or selection, but this is no different from the normal course of evolution and as such de-evolution is not compatible with a proper understanding of evolution due to natural selection.

<span class="mw-page-title-main">Biologist</span> Scientist studying living organisms

A biologist is a scientist who conducts research in biology. Biologists are interested in studying life on Earth, whether it is an individual cell, a multicellular organism, or a community of interacting populations. They usually specialize in a particular branch of biology and have a specific research focus.

<span class="mw-page-title-main">Richard Levins</span>

Richard Levins was a Marxist biologist, a population geneticist, biomathematician, mathematical ecologist, and philosopher of science who researched diversity in human populations. Until his death, Levins was a university professor at the Harvard T.H. Chan School of Public Health and a long-time political activist. He was best known for his work on evolution and complexity in changing environments and on metapopulations.

Developmental systems theory (DST) is an overarching theoretical perspective on biological development, heredity, and evolution. It emphasizes the shared contributions of genes, environment, and epigenetic factors on developmental processes. DST, unlike conventional scientific theories, is not directly used to help make predictions for testing experimental results; instead, it is seen as a collection of philosophical, psychological, and scientific models of development and evolution. As a whole, these models argue the inadequacy of the modern evolutionary synthesis on the roles of genes and natural selection as the principal explanation of living structures. Developmental systems theory embraces a large range of positions that expand biological explanations of organismal development and hold modern evolutionary theory as a misconception of the nature of living processes.

<span class="mw-page-title-main">Biology</span> Science that studies life

Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary information encoded in genes, which can be transmitted to future generations. Another major theme is evolution, which explains the unity and diversity of life. Energy processing is also important to life as it allows organisms to move, grow, and reproduce. Finally, all organisms are able to regulate their own internal environments.

A population model is a type of mathematical model that is applied to the study of population dynamics.

<i>Spore Creatures</i> 2008 video game

Spore Creatures is a 2008 science fiction adventure game developed by Griptonite Games and published by Electronic Arts. The game is a spin-off of Spore in which a player controls and evolves a creature of their creation to save another creature from the clutches of an alien who plans on dominating the galaxy.

<i>Spore</i> (2008 video game) 2008 video game

Spore is a 2008 life simulation real-time strategy god game developed by Maxis and published by Electronic Arts for Microsoft Windows and Mac OS X. Designed by Will Wright, it covers many genres including action, real-time strategy, and role-playing games. Spore allows a player to control the development of a species from its beginnings as a microscopic organism, through development as an intelligent and social creature, to interstellar exploration as a spacefaring culture. It has drawn wide attention for its massive scope, and its use of open-ended gameplay and procedural generation. Throughout each stage, players are able to use various creators to produce content for their games. These are then automatically uploaded to the online Sporepedia and are accessible by other players for download.

"The Part Played by Labour in the Transition from Ape to Man" is an unfinished essay written by Friedrich Engels in the spring of 1876. The essay forms the ninth chapter of Dialectics of Nature, which proposes a unitary materialist paradigm of natural and human history.

<span class="mw-page-title-main">Aristotle's biology</span> Aristotles theories of biology

Aristotle's biology is the theory of biology, grounded in systematic observation and collection of data, mainly zoological, embodied in Aristotle's books on the science. Many of his observations were made during his stay on the island of Lesbos, including especially his descriptions of the marine biology of the Pyrrha lagoon, now the Gulf of Kalloni. His theory is based on his concept of form, which derives from but is markedly unlike Plato's theory of Forms.

<span class="mw-page-title-main">Alternatives to Darwinian evolution</span> List of alternatives to Darwinian natural selection

Alternatives to Darwinian evolution have been proposed by scholars investigating biology to explain signs of evolution and the relatedness of different groups of living things. The alternatives in question do not deny that evolutionary changes over time are the origin of the diversity of life, nor that the organisms alive today share a common ancestor from the distant past ; rather, they propose alternative mechanisms of evolutionary change over time, arguing against mutations acted on by natural selection as the most important driver of evolutionary change.

References

  1. Harvard U.P. 1985 ISBN   0-674-20281-3
  2. p. 272