This article needs additional citations for verification .(May 2022) |
The Environmental Institute (O Instituto Ambiental (OIA)) is a non-profit organization devoted exclusively to building and managing Integrated Biosystems that purify sewage water in urban areas and for small farms and agro-industries in South America. [1] It was one of the first organizations created for such a purpose.
OIA applies integrated biosystems to recycle dangerously polluted wastewater into organic fertilizer, safe agricultural and aquaculture products, biofuel, habitat, and clean water. The process enhances flood control, soil renewal and CO2 reduction. OIA has constructed more than 70 water reclamation and community agricultural and development projects in Brazil, Nicaragua, Dominican Republic, and Spain, serving more than 15,000 persons and processing waste from various agricultural operations.
OIA projects are among the first and most comprehensive applications of the Intelligent Products System, which evolved into the Cradle to Cradle system. Early projects were instrumental in forming and implementing the systems, now used worldwide. These are some of the first practical uses of Intelligent Product and Cradle to Cradle principles in developing economies.
OIA projects resulted from successful green technology transfer from China, Germany and the U.S. to South America at a time when many sustainability technology transfers were failing. More than 25 technologies were transferred to Brazil to build the projects, with most of those technologies operating today and expanding rapidly.
Founded in Brazil in 1993, OIA was the collaborative brainchild of anti-poverty activist Waldemar Boff, renowned chemist Prof. Michael Braungart, community entrepreneur Valmir Fachini, biological engineer Katja Hansen, and environmental manager Douglas Mulhall. OIA developed out of collaboration between the Hamburger Umweltinstitut in Germany and the Brazilian social self-help organization SEOP. It benefitted from the conceptual work of Michael Braungart, GAIA Foundation President Jose Lutzemberger, and the engineering concepts of Prof G.L.Chan of Mauritius, whose Integrated Farming System is a major component.
A precursor to OIA's projects was constructed in Silva Jardim RJ Brazil as a demonstration for the 1992 Rio Earth Summit and was featured on U.S. National Public Radio as one of the only functioning examples of a sustainable technology within driving distance of that pivotal conference.
The work of OIA is supported by various municipalities, foundations, and companies.
Most conventional wastewater treatment plants try to clean water mechanically and chemically then release it into waterways.[ citation needed ] Such systems are expensive, produce limited economic benefits, and can themselves pollute. By contrast, integrated biosystems treat water by recycling it for agricultural use, producing numerous economic, health and environmental benefits.
Nutrients in wastewater are recycled by algae, crops and livestock via processes such as photosynthesis, mineralization, and uptake.
Water is treated by combined natural processes such as soil and root filtration, sedimentation and biochemical reactions including photosynthesis, anaerobic and aerobic digestion.
In this system, clean water is a by-product along with organic crops, fertilized soil, and reclaimed wildlife habitat. Economic benefits come from soil restoration, fertilizer recovery, crops and livestock. Products can be produced safely and profitably with low input costs.
Costs are minimized by using wastewater for fertilizer, integrating crops for pest protection, maintaining biodiversity, treating water via natural processes, and reducing environmental liability.
The technology is especially suitable for poor soil, and regions where flood control or water conservation are required.
Locally available resources are used so costs for imported fertilizer and equipment are minimized.
Components are scalable, ranging from single households to large farms and communities.
Due to high levels of year-round ambient sunlight, more productive applications occur in a belt defined by 30 degrees latitude north and south of the equator.
The following outline is provided as an overview of and topical guide to agriculture:
Intensive agriculture, also known as intensive farming, conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital, labour, agrochemicals and water, and higher crop yields per unit land area.
Water reclamation is the process of converting municipal wastewater (sewage) or industrial wastewater into water that can be reused for a variety of purposes. Types of reuse include: urban reuse, agricultural reuse (irrigation), environmental reuse, industrial reuse, planned potable reuse, and de facto wastewater reuse. For example, reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. Reused water may also be directed toward fulfilling certain needs in residences, businesses, and industry, and could even be treated to reach drinking water standards. The injection of reclaimed water into the water supply distribution system is known as direct potable reuse. However, drinking reclaimed water is not a typical practice. Treated municipal wastewater reuse for irrigation is a long-established practice, especially in arid countries. Reusing wastewater as part of sustainable water management allows water to remain as an alternative water source for human activities. This can reduce scarcity and alleviate pressures on groundwater and other natural water bodies.
Biosolids are solid organic matter recovered from a sewage treatment process and used as fertilizer. In the past, it was common for farmers to use animal manure to improve their soil fertility. In the 1920s, the farming community began also to use sewage sludge from local wastewater treatment plants. Scientific research over many years has confirmed that these biosolids contain similar nutrients to those in animal manures. Biosolids that are used as fertilizer in farming are usually treated to help to prevent disease-causing pathogens from spreading to the public. Some sewage sludge can not qualify as biosolids due to persistent, bioaccumulative and toxic chemicals, radionuclides, and heavy metals at levels sufficient to contaminate soil and water when applied to land.
Agribusiness is the industry, enterprises, and the field of study of value chains in agriculture and in the bio-economy, in which case it is also called bio-business or bio-enterprise. The primary goal of agribusiness is to maximize profit while satisfying the needs of consumers for products related to natural resources such as biotechnology, farms, food, forestry, fisheries, fuel, and fiber.
Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.
Milorganite is a brand of biosolids fertilizer produced by treating sewage sludge by the Milwaukee Metropolitan Sewerage District. The term is a portmanteau of the term Milwaukee Organic Nitrogen. The sewer system of the District collects municipal wastewater from the Milwaukee metropolitan area. After settling, wastewater is treated with microbes to break down organic matter at the Jones Island Water Reclamation Facility in Milwaukee, Wisconsin. The byproduct sewage sludge is produced. This is heat-dried with hot air in the range of 900–1,200 °F (482–649 °C), which heats the sewage sludge to at least 176 °F (80 °C) to kill pathogens. The material is then pelletized and marketed throughout the United States under the name Milorganite. The result is recycling of the nitrogen and phosphorus from the waste-stream as fertilizer. The treated wastewater is discharged to Lake Michigan.
Ecological sanitation, commonly abbreviated as ecosan, is an approach to sanitation provision which aims to safely reuse excreta in agriculture. It is an approach, rather than a technology or a device which is characterized by a desire to "close the loop", mainly for the nutrients and organic matter between sanitation and agriculture in a safe manner. One of the aims is to minimise the use of non-renewable resources. When properly designed and operated, ecosan systems provide a hygienically safe system to convert human excreta into nutrients to be returned to the soil, and water to be returned to the land. Ecosan is also called resource-oriented sanitation.
Cradle-to-cradle design is a biomimetic approach to the design of products and systems that models human industry on nature's processes, where materials are viewed as nutrients circulating in healthy, safe metabolisms. The term itself is a play on the popular corporate phrase "cradle to grave", implying that the C2C model is sustainable and considerate of life and future generations—from the birth, or "cradle", of one generation to the next generation, versus from birth to death, or "grave", within the same generation.
Industrial agriculture is a form of modern farming that refers to the industrialized production of crops and animals and animal products like eggs or milk. The methods of industrial agriculture include innovation in agricultural machinery and farming methods, genetic technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, the application of patent protection to genetic information, and global trade. These methods are widespread in developed nations and increasingly prevalent worldwide. Most of the meat, dairy, eggs, fruits and vegetables available in supermarkets are produced in this way.
This is a glossary of environmental science.
Agricultural engineering, also known as agricultural and biosystems engineering, is the field of study and application of engineering science and designs principles for agriculture purposes, combining the various disciplines of mechanical, civil, electrical, food science, environmental, software, and chemical engineering to improve the efficiency of farms and agribusiness enterprises as well as to ensure sustainability of natural and renewable resources.
Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.
Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.
The Indian Institute of Soil Science is an autonomous institute for higher learning, established under the umbrella of Indian Council of Agricultural Research (ICAR) by the Ministry of Agriculture, Government of India for advanced research in the field of soil sciences.
A urine-diverting dry toilet (UDDT) is a type of dry toilet with urine diversion that can be used to provide safe, affordable sanitation in a variety of contexts worldwide. The separate collection of feces and urine without any flush water has many advantages, such as odor-free operation and pathogen reduction by drying. While dried feces and urine harvested from UDDTs can be and routinely are used in agriculture, many UDDT installations do not apply any sort of recovery scheme. The UDDT is an example of a technology that can be used to achieve a sustainable sanitation system. This dry excreta management system is an alternative to pit latrines and flush toilets, especially where water is scarce, a connection to a sewer system and centralized wastewater treatment plant is not feasible or desired, fertilizer and soil conditioner are needed for agriculture, or groundwater pollution should be minimized.
Lystek International is a Canadian waste treatment technology company founded in 2000 at the University of Waterloo, Ontario, Canada to commercialize treatment technologies for biosolids and other non-hazardous, organic waste materials. Lystek is headquartered in Cambridge, Ontario, Canada and is owned by its management and R.W. Tomlinson Ltd.
Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.
The Thomas P. Smith Water Reclamation Facility (TPSWRF) is owned and operated by the city of Tallahassee, Florida. The facility provides sewage treatment services for Tallahassee, Florida and the surrounding areas.
Seaweed fertiliser is organic fertilizer made from seaweed that is used in agriculture to increase soil fertility and plant growth. The use of seaweed fertilizer dates back to antiquity and has a broad array of benefits for soils. Seaweed fertilizer can be applied in a number of different forms, including refined liquid extracts and dried, pulverized organic material. Through its composition of various bioactive molecules, seaweed functions as a strong soil conditioner, bio-remediator, and biological pest control, with each seaweed phylum offering various benefits to soil and crop health. These benefits can include increased tolerance to abiotic stressors, improved soil texture and water retention, and reduced occurrence of diseases.