The Evolution of Cooperation

Last updated

The Evolution of Cooperation
The Evolution of Cooperation.jpg
Book cover
Author Robert Axelrod
LanguageEnglish
Genre Philosophy, sociology
Publisher Basic Books
Publication date
April 1984
Publication placeUnited States
Media typeHardback, paperback, audiobook
Pages241
ISBN 0-465-00564-0
OCLC 76963800
302 14
LC Class HM131.A89 1984

The Evolution of Cooperation is a 1984 book written by political scientist Robert Axelrod [1] that expands upon a paper of the same name written by Axelrod and evolutionary biologist W.D. Hamilton. [2] The article's summary addresses the issue in terms of "cooperation in organisms, whether bacteria or primates". [2]

Contents

The book details a theory on the emergence of cooperation between individuals, drawing from game theory and evolutionary biology. Since 2006, reprints of the book have included a foreword by Richard Dawkins and have been marketed as a revised edition.

The book provides an investigation into how cooperation can emerge and persist as explained by the application of game theory. [2] The book provides a detailed explanation of the evolution of cooperation, beyond traditional game theory. Academic literature regarding forms of cooperation that are not easily explained in traditional game theory, especially when considering evolutionary biology, largely took its modern form as a result of Axelrod's and Hamilton's influential 1981 paper [2] and the subsequent book.

Background: Axelrod's tournaments

Axelrod initially solicited strategies from other game theorists to compete in the first tournament. Each strategy was paired with each other strategy for 200 iterations of a Prisoner's Dilemma game and scored on the total points accumulated through the tournament. The winner was a very simple strategy submitted by Anatol Rapoport called "tit for tat" (TFT) that cooperates on the first move, and subsequently echoes (reciprocates) what the other player did on the previous move. The results of the first tournament were analyzed and published, and a second tournament was held to see if anyone could find a better strategy. TFT won again. Axelrod analyzed the results and made some interesting discoveries about the nature of cooperation, which he describes in his book. [3]

In both actual tournaments and various replays, the best-performing strategies were nice: [4] that is, they were never the first to defect. Many of the competitors went to great lengths to gain an advantage over the "nice" (and usually simpler) strategies, but to no avail: tricky strategies fighting for a few points generally could not do as well as nice strategies working together. TFT (and other "nice" strategies generally) "won, not by doing better than the other player, but by eliciting cooperation [and] by promoting the mutual interest rather than by exploiting the other's weakness." [5]

Being "nice" can be beneficial, but it can also lead to being suckered. To obtain the benefit or avoid exploitation it is necessary to be provocable and forgiving. When the other player defects, a nice strategy must immediately be provoked into retaliatory defection. [6] The same goes for forgiveness: return to cooperation as soon as the other player does. Overdoing the punishment risks escalation, and can lead to an "unending echo of alternating defections" that depresses the scores of both players. [7]

Most of the games that game theory had heretofore investigated are "zero-sum" that is, the total rewards are fixed, and a player does well only at the expense of other players. But real life is not zero-sum. Our best prospects are usually in cooperative efforts. In fact, TFT cannot score higher than its partner; at best it can only do "as good as". Yet it won the tournaments by consistently scoring a strong second-place with a variety of partners. [8] Axelrod summarizes this as "don't be envious"; [9] in other words, don't strive for a payoff greater than the other player's. [10]

In any IPD game, there is a certain maximum score each player can get by always cooperating. But some strategies try to find ways of getting a little more with an occasional defection (exploitation). This can work against some strategies that are less provocable or more forgiving than TFT, but generally, they do poorly. "A common problem with these rules is that they used complex methods of making inferences about the other player [strategy] and these inferences were wrong." [11] Against TFT one can do no better than to simply cooperate. [12] Axelrod calls this "clarity". Or: "don't be too clever". [13]

The success of any strategy depends on the nature of the particular strategies it encounters, which depends on the composition of the overall population. To better model the effects of reproductive success Axelrod also did an "ecological" tournament, where the prevalence of each type of strategy in each round was determined by that strategy's success in the previous round. The competition in each round becomes stronger as weaker performers are reduced and eliminated. The results were amazing: a handful of strategies all "nice" came to dominate the field. [14] In a sea of non-nice strategies the "nice" strategies provided they were also provocable did well enough with each other to offset the occasional exploitation. As cooperation became general the non-provocable strategies were exploited and eventually eliminated, whereupon the exploitive (non-cooperating) strategies were out-performed by the cooperative strategies.

In summary, success in an evolutionary "game" correlated with the following characteristics:

Foundation of reciprocal cooperation

The lessons described above apply in environments that support cooperation, but whether cooperation is supported at all, depends crucially on the probability (called ω [omega]) that the players will meet again, [15] also called the discount parameter or, figuratively, the shadow of the future. When ω is low – that is, the players have a negligible chance of meeting again – each interaction is effectively a single-shot Prisoner's Dilemma game, and one might as well defect in all cases (a strategy called "ALL D"), because even if one cooperates there is no way to keep the other player from exploiting that. But in the iterated PD the value of repeated cooperative interactions can become greater than the benefit/risk of single exploitation (which is all that a strategy like TFT will tolerate).

Curiously, rationality and deliberate choice are not necessary, nor trust nor even consciousness, [16] as long as there is a pattern that benefits both players (e.g., increases fitness), and some probability of future interaction. Often the initial mutual cooperation is not even intentional, but having "discovered" a beneficial pattern both parties respond to it by continuing the conditions that maintain it.

This implies two requirements for the players, aside from whatever strategy they may adopt. First, they must be able to recognize other players, to avoid exploitation by cheaters. Second, they must be able to track their previous history with any given player, in order to be responsive to that player's strategy. [17]

Even when the discount parameter ω is high enough to permit reciprocal cooperation there is still a question of whether and how cooperation might start. One of Axelrod's findings is that when the existing population never offers cooperation nor reciprocates it – the case of ALL D – then no nice strategy can get established by isolated individuals; cooperation is strictly a sucker bet. (The "futility of isolated revolt". [18] ) But another finding of great significance is that clusters of nice strategies can get established. Even a small group of individuals with nice strategies with infrequent interactions can yet do so well on those interactions to make up for the low level of exploitation from non-nice strategies. [19]

Cooperation becomes more complicated, however, as soon as more realistic models are assumed that for instance offer more than two choices of action, provide the possibility of gradual cooperation, make actions constrain future actions (path dependence), or in which interpret the associate's actions are is non-trivial (e.g. recognizing the degree of cooperation shown) [20]

Subsequent work

In 1984 Axelrod estimated that there were "hundreds of articles on the Prisoner's Dilemma cited in Psychological Abstracts", [21] and estimated that citations to The Evolution of Cooperation alone were "growing at the rate of over 300 per year". [22] To fully review this literature is infeasible. What follows are therefore only a few selected highlights.

Axelrod considers his subsequent book, The Complexity of Cooperation , [23] to be a sequel to The Evolution of Cooperation. Other work on the evolution of cooperation has expanded to cover prosocial behavior generally, [24] and in religion, [25] other mechanisms for generating cooperation, [26] the IPD under different conditions and assumptions, [27] and the use of other games such as the Public Goods and Ultimatum games to explore deep-seated notions of fairness and fair play. [28] It has also been used to challenge the rational and self-regarding "economic man" model of economics, [29] and as a basis for replacing Darwinian sexual selection theory with a theory of social selection. [30]

Nice strategies are better able to invade if they have social structures or other means of increasing their interactions. Axelrod discusses this in chapter 8; in a later paper he and Rick Riolo and Michael Cohen [31] use computer simulations to show cooperation rising among agents who have negligible chance of future encounters but can recognize similarity of an arbitrary characteristic (such as a green beard); whereas other studies [32] have shown that the only Iterated Prisoner's Dilemma strategies that resist invasion in a well-mixed evolving population are generous strategies.

When an IPD tournament introduces noise (errors or misunderstandings), TFT strategies can get trapped into a long string of retaliatory defections, thereby depressing their score. TFT also tolerates "ALL C" (always cooperate) strategies, which then give an opening to exploiters. [33] In 1992 Martin Nowak and Karl Sigmund demonstrated a strategy called Pavlov (or "winstay, loseshift") that does better in these circumstances. [34] Pavlov looks at its own prior move as well as the other player's move. If the payoff was R or P (see "Prisoner's Dilemma", above) it cooperates; if S or T it defects.

In a 2006 paper Nowak listed five mechanisms by which natural selection can lead to cooperation. [35] In addition to kin selection and direct reciprocity, he shows that:

The payoffs in the Prisoner's Dilemma game are fixed, but in real life defectors are often punished by cooperators. Where punishment is costly there is a second-order dilemma amongst cooperators between those who pay the cost of enforcement and those who do not. [37] Other work has shown that while individuals given a choice between joining a group that punishes free-riders and one that does not initially prefer the sanction-free group, yet after several rounds they will join the sanctioning group, seeing that sanctions secure a better payoff. [38]

In small populations or groups there is the possibility that indirect reciprocity (reputation) can interact with direct reciprocity (e.g. tit for tat) with neither strategy dominating the other. [39] The interactions between these strategies can give rise to dynamic social networks which exhibit some of the properties observed in empirical networks [40] If network structure and choices in the Prisoner's dilemma co-evolve, then cooperation can survive. In the resulting networks cooperators will be more centrally located than defectors who will tend to be in the periphery of the network. [41]

In "The Coevolution of Parochial Altruism and War" by Jung-Kyoo Choi and Samuel Bowles. From their summary:

Altruism—benefiting fellow group members at a cost to oneself —and parochialism—hostility towards individuals not of one's own ethnic, racial, or other group—are common human behaviors. The intersection of the two—which we term "parochial altruism"—is puzzling from an evolutionary perspective because altruistic or parochial behavior reduces one's payoffs by comparison to what one would gain from eschewing these behaviors. But parochial altruism could have evolved if parochialism promoted intergroup hostilities and the combination of altruism and parochialism contributed to success in these conflicts.... [Neither] would have been viable singly, but by promoting group conflict they could have evolved jointly. [42]

Consideration of the mechanisms through which learning from the social environment occurs is pivotal in studies of evolution. In the context of this discussion, learning rules, specifically conformism and payoff-dependent imitation, are not arbitrarily predetermined but are biologically selected. Behavioral strategies, which include cooperation, defection, and cooperation coupled with punishment, are chosen in alignment with the agent's prevailing learning rule. Simulations of the model under conditions approximating those experienced by early hominids reveal that conformism can evolve even when individuals are solely faced with a cooperative dilemma, contrary to previous assertions. Moreover, the incorporation of conformists significantly amplifies the group size within which cooperation can be sustained. These model results demonstrate robustness, maintaining validity even under conditions of high migration rates and infrequent intergroup conflicts. [43]

Neither Choi & Bowles nor Guzmán, Rodriguez-Sicket and Rowthorn claim that humans have actually evolved in this way, but that computer simulations show how war could be promoted by the interaction of these behaviors. A crucial open research question, thus, is how realistic the assumptions are on which these simulation models are based. [44]

Software

Several software packages have been created to run prisoner's dilemma simulations and tournaments, some of which have available source code.


See also

Related Research Articles

An evolutionarily stable strategy (ESS) is a strategy that is impermeable when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy which may be novel or initially rare. Introduced by John Maynard Smith and George R. Price in 1972/3, it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science.

The prisoner's dilemma is a game theory thought experiment involving two rational agents, each of whom can either cooperate for mutual benefit or betray their partner ("defect") for individual gain. The dilemma arises from the fact that while defecting is rational for each agent, cooperation yields a higher payoff for each. The puzzle was designed by Merrill Flood and Melvin Dresher in 1950 during their work at the RAND Corporation. They invited economist Armen Alchian and mathematician John Williams to play a hundred rounds of the game, observing that Alchian and Williams often chose to cooperate. When asked about the results, John Nash remarked that rational behavior in the iterated version of the game can differ from that in a single-round version. This insight anticipated a key result in game theory: cooperation can emerge in repeated interactions, even in situations where it is not rational in a one-off interaction.

<span class="mw-page-title-main">Reciprocal altruism</span> Form of behaviour between organisms

In evolutionary biology, reciprocal altruism is a behaviour whereby an organism acts in a manner that temporarily reduces its fitness while increasing another organism's fitness, with the expectation that the other organism will act in a similar manner at a later time.

<span class="mw-page-title-main">Robert Axelrod (political scientist)</span> American political scientist

Robert Marshall Axelrod is an American political scientist. He is Professor of Political Science and Public Policy at the University of Michigan where he has been since 1974. He is best known for his interdisciplinary work on the evolution of cooperation. His current research interests include complexity theory, international security, and cyber security. His research includes innovative approaches to explaining conflict of interest, the emergence of norms, how game theory is used to study cooperation, and cross-disciplinary studies on evolutionary processes.

<span class="mw-page-title-main">Tit for tat</span> English saying meaning "equivalent retaliation"

Tit for tat is an English saying meaning "equivalent retaliation". It is an alteration of tip for tap "blow for blow", first recorded in 1558.

<span class="mw-page-title-main">Group selection</span> Proposed mechanism of evolution

Group selection is a proposed mechanism of evolution in which natural selection acts at the level of the group, instead of at the level of the individual or gene.

<span class="mw-page-title-main">Cooperation</span> Groups working or acting together

Cooperation takes place when a group of organisms works or acts together for a collective benefit to the group as opposed to working in competition for selfish individual benefit. In biology, many animal and plant species cooperate both with other members of their own species and with members of other species with whom they have relationships.

Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.

<span class="mw-page-title-main">Martin Nowak</span> Austrian-born scientist

Martin Andreas Nowak is an Austrian-born professor of mathematics and biology at Harvard University. He is one of the leading researchers in evolutionary dynamics. Nowak has made contributions to the fields of evolutionary theory, cooperation, viral dynamics, and cancer dynamics.

<span class="mw-page-title-main">Altruism (biology)</span> Behaviour that increases the fitness of another while decreasing the fitness of self

In biology, altruism refers to behaviour by an individual that increases the fitness of another individual while decreasing their own. Altruism in this sense is different from the philosophical concept of altruism, in which an action would only be called "altruistic" if it was done with the conscious intention of helping another. In the behavioural sense, there is no such requirement. As such, it is not evaluated in moral terms—it is the consequences of an action for reproductive fitness that determine whether the action is considered altruistic, not the intentions, if any, with which the action is performed.

In evolution, cooperation is the process where groups of organisms work or act together for common or mutual benefits. It is commonly defined as any adaptation that has evolved, at least in part, to increase the reproductive success of the actor's social partners. For example, territorial choruses by male lions discourage intruders and are likely to benefit all contributors.

A collective action problem or social dilemma is a situation in which all individuals would be better off cooperating but fail to do so because of conflicting interests between individuals that discourage joint action. The collective action problem has been addressed in political philosophy for centuries, but was most clearly established in 1965 in Mancur Olson's The Logic of Collective Action.

Reciprocity in evolutionary biology refers to mechanisms whereby the evolution of cooperative or altruistic behaviour may be favoured by the probability of future mutual interactions. A corollary is how a desire for revenge can harm the collective and therefore be naturally selected against.

The concept of the evolution of morality refers to the emergence of human moral behavior over the course of human evolution. Morality can be defined as a system of ideas about right and wrong conduct. In everyday life, morality is typically associated with human behavior rather than animal behavior. The emerging fields of evolutionary biology, and in particular evolutionary psychology, have argued that, despite the complexity of human social behaviors, the precursors of human morality can be traced to the behaviors of many other social animals. Sociobiological explanations of human behavior remain controversial. Social scientists have traditionally viewed morality as a construct, and thus as culturally relative, although others such as Sam Harris argue that there is an objective science of morality.

<span class="mw-page-title-main">Helping behavior</span> Voluntarily prosocial behaviour

Helping behavior refers to voluntary actions intended to help others, with reward regarded or disregarded. It is a type of prosocial behavior.

Strong reciprocity is an area of research in behavioral economics, evolutionary psychology, and evolutionary anthropology on the predisposition to cooperate even when there is no apparent benefit in doing so. This topic is particularly interesting to those studying the evolution of cooperation, as these behaviors seem to be in contradiction with predictions made by many models of cooperation. In response, current work on strong reciprocity is focused on developing evolutionary models which can account for this behavior. Critics of strong reciprocity argue that it is an artifact of lab experiments and does not reflect cooperative behavior in the real world.

Social preferences describe the human tendency to not only care about one's own material payoff, but also the reference group's payoff or/and the intention that leads to the payoff. Social preferences are studied extensively in behavioral and experimental economics and social psychology. Types of social preferences include altruism, fairness, reciprocity, and inequity aversion. The field of economics originally assumed that humans were rational economic actors, and as it became apparent that this was not the case, the field began to change. The research of social preferences in economics started with lab experiments in 1980, where experimental economists found subjects' behavior deviated systematically from self-interest behavior in economic games such as ultimatum game and dictator game. These experimental findings then inspired various new economic models to characterize agent's altruism, fairness and reciprocity concern between 1990 and 2010. More recently, there are growing amounts of field experiments that study the shaping of social preference and its applications throughout society.

Third-party punishment is punishment of a transgressor which is administered, not by a victim of the transgression, but rather by a third party not directly affected by the transgression. It has been argued that third-party punishments are the essence of social norms, as they are an evolutionarily stable strategy, unlike second-party punishments. It has also been shown that third-party punishments are exhibited in all examined populations, though the magnitude of the punishments varies greatly, and that costly punishment co-varies with altruistic behavior. Differences between within-group and inter-group altruistic punishments have also been observed.

Social heuristics are simple decision making strategies that guide people's behavior and decisions in the social environment when time, information, or cognitive resources are scarce. Social environments tend to be characterised by complexity and uncertainty, and in order to simplify the decision-making process, people may use heuristics, which are decision making strategies that involve ignoring some information or relying on simple rules of thumb.

Reciprocal altruism in humans refers to an individual behavior that gives benefit conditionally upon receiving a returned benefit, which draws on the economic concept – ″gains in trade″. Human reciprocal altruism would include the following behaviors : helping patients, the wounded, and the others when they are in crisis; sharing food, implement, knowledge.

References

  1. Axelrod's book was summarized in Douglas Hofstadter's May 1983 "Metamagical Themas" column in Scientific American ( Hofstadter 1983 ) (reprinted in his book ( Hofstadter 1985 ); see also Richard Dawkin's summary in the second edition of The Selfish Gene (Dawkins 1989, ch. 12).
  2. 1 2 3 4 Axelrod & Hamilton 1981.
  3. Axelrod 1984.
  4. Axelrod 1984 , p. 113.
  5. Axelrod 1984 , p. 130.
  6. Axelrod 1984 , pp. 62, 211.
  7. Axelrod 1984 , p. 186.
  8. Axelrod 1984 , p. 112.
  9. Axelrod 1984 , pp. 110–113.
  10. Axelrod 1984 , p. 25.
  11. Axelrod 1984 , p. 120.
  12. Axelrod 1984 , pp. 47, 118.
  13. Axelrod 1984 , pp. 120+.
  14. Axelrod 1984 , pp. 48–53.
  15. Axelrod 1984 , p. 13.
  16. Axelrod 1984 , pp. 18, 174.
  17. Axelrod 1984 , p. 174.
  18. Axelrod 1984 , p. 150.
  19. Axelrod 1984 , pp. 63–68, 99
  20. Prechelt, Lutz (1996). "INCA: A multi-choice model of cooperation under restricted communication". Biosystems. 37 (1–2): 127–134. Bibcode:1996BiSys..37..127P. doi:10.1016/0303-2647(95)01549-3.
  21. Axelrod 1984 , pp. 28.
  22. Axelrod 1984 , pp. 3.
  23. Axelrod 1997.
  24. Boyd 2006; Bowles 2006.
  25. Norenzayan & Shariff 2008.
  26. Nowak 2006.
  27. Axelrod & Dion 1988; Hoffman 2000 categorizes and summarizes over 50 studies
  28. Nowak, Page & Sigmund 2000; Sigmund, Fehr & Nowak 2002.
  29. Camerer & Fehr 2006.
  30. Roughgarden, Oishi & Akcay 2006.
  31. Riolo, Cohen & Axelrod 2001.
  32. Stewart and Plotkin (2013)
  33. Axelrod (1984 , pp. 136–138) has some interesting comments on the need to suppress universal cooperators. See also a similar theme in Piers Anthony's novel Macroscope .
  34. Nowak & Sigmund 1992; see also Milinski 1993.
  35. Nowak 2006;
  36. Here group selection is not a form of evolution, which is problematical (see Dawkins (1989), ch. 7), but a mechanism for evolving cooperation.
  37. Hauert & others 2007.
  38. Gürerk, Irlenbusch & Rockenbach 2006
  39. Phelps, S., Nevarez, G. & Howes, A., 2009. The effect of group size and frequency of encounter on the evolution of cooperation. In LNCS, Volume 5778, ECAL 2009, Advances in Artificial Life: Darwin meets Von Neumann. Budapest: Springer, pp. 37–44. .
  40. Phelps, S (2012). "Emergence of social networks via direct and indirect reciprocity" (PDF). Autonomous Agents and Multi-Agent Systems. doi:10.1007/s10458-012-9207-8. S2CID   1337854.
  41. Fosco & Mengel 2011.
  42. Choi & Bowles 2007 , p. 636.
  43. Guzmán, R. A.; Rodríguez-Sickert, C.; Rowthorn, R. (2007). "When in Rome, do as the Romans do: the coevolution of altruistic punishment, conformist learning, and cooperation" (PDF). Evolution and Human Behavior. 28 (2): 112–117. Bibcode:2007EHumB..28..112A. doi:10.1016/j.evolhumbehav.2006.08.002.
  44. Rusch 2014.

Bibliography

Most of these references are to the scientific literature, to establish the authority of various points in the article. A few references of lesser authority, but greater accessibility are also included.