This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
The Focus Foundation, located in Davidsonville, Maryland, is a research foundation dedicated to identifying and assisting families and children who have X and Y Chromosomal Variations (also called X & Y chromosomal variations), dyslexia and/or developmental coordination disorder. These conditions can lead to language-based disabilities, motor planning deficits, reading dysfunction, and attention and behavioral disorders. The Focus Foundation believes that, through increased awareness, early identification, and specific and targeted treatment, children with these conditions can reach their full potential.
The Focus Foundation leads in the research of X and Y Chromosomal Variations with 25% of all publications on the disorders. The foundation also leads the research field in testosterone treatment for the testosterone deficiency associated with extra X chromosomes.
The Focus Foundation was established in 2005 by Carole Samango-Sprouse. Dr. Samango-Sprouse is also the director of the Neurodevelopmental Diagnostic Center for Young Children, located near Annapolis, Maryland, and an associate clinical professor of pediatrics at The George Washington University in Washington, D.C., and an adjunct associate professor in the Department of Human and Molecular Genetics at Florida International University. She serves as the executive director and Chief Science Officer of The Focus Foundation and has experience with the three disorders that are the Foundation's focus: X & Y chromosomal variations, developmental dyspraxia and dyslexia. The Focus Foundation attempts to increase awareness an X and Y chromosomal variations in order to help children with these disorders. Although all physicians, ancillary health care providers and special educators are taught that genetic abnormalities can impact a child's development, practitioners often receive insufficient information about these disorders, and, therefore, do not often test for X & Y chromosomal variations when a child presents with neurodevelopmental concerns. By promoting awareness of these disorders and associated symptoms, The Focus Foundation hopes to increase early identification, implement interventions, and help families pursue optimal outcomes for their children.
X & Y variations are common but frequently undiagnosed genetic conditions that differ from the normal sex chromosome pairings of XX for females and XY for males. Errors in recombination during meiosis produce additional X or Y chromosomes when compared to the typical complement of 46,XX or 46,XY. The resulting chromosomes (47 or more) may impact a child's neurodevelopment and cognition. Twenty-one babies born each day have an X & Y chromosomal variation, and only five will be diagnosed in their lifetime.
In addition, twenty percent of school-aged children illustrate signs of learning dysfunction. Given the frequency of X & Y chromosomal variations in the general population, children who present with learning disorders of an unknown etiology should receive genetic testing to rule out these common disorders. Only 5% of children with dyslexia are ever identified in their lifetime although they have symptoms presenting by 6 years of age, while most children with developmental dyspraxia are misdiagnosed with other disorders such as just speech delay, behavior problems, or ADHD. The Focus Foundation works with healthcare providers, specialists, and parents to properly diagnosis, research, and organize a specific and targeted treatment for children with X & Y chromosomal variations. With the proper diagnosis and intervention, children who have these neurogenetic disorders are transformed from vulnerable to powerful and become more confident, able, and successful than they have ever been.
The Focus Foundation aims to inform professionals and families throughout the country, as well as around the world about these disorders. The organization has hosted international clinics in the United Kingdom, Italy, and, more recently, Australia. These conferences invite families and physicians for consultations and speeches from a multi-disciplinary team of experts specializing in these disorders. By promoting the spread of accurate and novel information about the incidence, diagnosis, symptoms, and management of these disorders, The Focus Foundation aims to encourage recovery worldwide. With help, all of these children can reach their full potential.
The Focus Foundation consists of scientists, scholars, educators, health care providers, fundraising and marketing experts, and volunteers that work together on these issues and help change these children's lives. The team conducts and presents research projects in order to further expand our understanding of these disorders. The Focus Foundation attends international and domestic meetings in order to foster partnerships in order to research, educate and train medical professionals and the community about developmental disturbances, brain-based intervention, and syndrome-specific treatment.
The Focus Foundation researches and helps families with children who have X and Y chromosomal variations, dyslexia, and/or dyspraxia. The X and Y Chromosomal Variations studied by The Focus Foundation include: · 45,X (Turner syndrome): · 47,XXX (Triple X syndrome; Trisomy X) · 47,XXY (Klinefelter syndrome) · 47,XYY (Jacob syndrome) · 48,XXXY · 48,XXYY · 48,XXXX · 49,XXXXY
The Focus Foundation works with families, healthcare providers and educators.
The Focus Foundation helps families identify and understand specific reasons for their child's difficulties in school, behavioral problems, or developmental delays. In addition, through their research, the team identifies the treatment and management strategies that effectively allow children with X & Y chromosome variations and other rare disorders to reach their optimal outcome. These personalized recommendations are based one years of expertise and impact on health and well being as well as home, school and community life.
Most health care practitioners are not familiar with chromosome variations and, therefore, rarely consider X & Y chromosomal variations as a possible explanation for developmental concerns. The Focus Foundation works to inform practitioners of common signs that might indicate that a child has a chromosome variation, as well as provide resources and partnerships with which to offer genetic testing for these disorders. With the introduction of more accurate and affordable testing, X & Y chromosome variations are beginning to be more widely known in the medical community.
The Focus Foundation informs these professionals on how to work with and optimize the outcome in spite of developmental concerns or special needs: from providing teachers with resources and strategies to determining what kinds of outside services each child may need. With the development and administration of appropriate therapeutic intervention, every child has the opportunity to achieve their goals.
The Focus Foundation hosts several conferences annually for different groups; these conferences include expert speakers that specialize in Neurodevelopment, Pediatric Genetics and Neurology, Endocrinology, Orthopedics, Immunology, Physical Therapy, Speech and Language, and Occupational Therapy.
First held in 2011, The Atypical Learner Conference is designed for parents and caregivers of bright children who might be struggling to succeed in school. This conference focuses on understanding common causes, explanations, and treatments for dyslexia, ADHD, speech delay, school failure, and behavioral difficulties.
Now in its sixteenth year, this is the largest gathering of this rare disorder in the world, with attendees traveling from across the United States and the globe. The Maryland conference features patient evaluations by a multidisciplinary team of physicians who specialize in rare chromosomal variations and have established themselves as experts in their fields. These and other experts present pertinent and educational information about 49,XXXXY to parents in order to better equip families to pursue optimal outcomes for their child.
Similar to the conference for children with 49,XXXXY, this conference focuses on children with 48,XXXY, their families and healthcare providers.
The Focus Foundation engages in research of the general biological causes and potential treatments of aspects of the phenotype of X and Y Chromosomal Variations. Research includes the impact of each additive X, the potential benefit of testosterone replacement therapy at different integral junctures, and the regional brain differences within each disorder and treatment group.
An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal pairs, which may have different structures. The DNA in autosomes is collectively known as atDNA or auDNA.
XYY syndrome, also known as Jacobs syndrome, is an aneuploid genetic condition in which a male has an extra Y chromosome. There are usually few symptoms. These may include being taller than average and an increased risk of learning disabilities. The person is generally otherwise normal, including typical rates of fertility.
Nondisjunction is the failure of homologous chromosomes or sister chromatids to separate properly during cell division (mitosis/meiosis). There are three forms of nondisjunction: failure of a pair of homologous chromosomes to separate in meiosis I, failure of sister chromatids to separate during meiosis II, and failure of sister chromatids to separate during mitosis. Nondisjunction results in daughter cells with abnormal chromosome numbers (aneuploidy).
XXYY syndrome is a sex chromosome anomaly in which males have 2 extra chromosomes, one X and one Y chromosome. Human cells usually contain two sex chromosomes, one from the mother and one from the father. Usually, females have two X chromosomes (XX) and males have one X and one Y chromosome (XY). The appearance of at least one Y chromosome with a properly functioning SRY gene makes a male. Therefore, humans with XXYY are genotypically male. Males with XXYY syndrome have 48 chromosomes instead of the typical 46. This is why XXYY syndrome is sometimes written as 48, XXYY syndrome or 48, XXYY. It affects an estimated one in every 18,000–40,000 male births.
The Pallister–Killian syndrome (PKS), also termed tetrasomy 12p mosaicism or the Pallister mosaic aneuploidy syndrome, is an extremely rare and severe genetic disorder. PKS is due to the presence of an extra and abnormal chromosome termed a small supernumerary marker chromosome (sSMC). sSMCs contain copies of genetic material from parts of virtually any other chromosome and, depending on the genetic material they carry, can cause various genetic disorders and neoplasms. The sSMC in PKS consists of multiple copies of the short arm of chromosome 12. Consequently, the multiple copies of the genetic material in the sSMC plus the two copies of this genetic material in the two normal chromosome 12's are overexpressed and thereby cause the syndrome. Due to a form of genetic mosaicism, however, individuals with PKS differ in the tissue distributions of their sSMC and therefore show different syndrome-related birth defects and disease severities. For example, individuals with the sSMC in their heart tissue are likely to have cardiac structural abnormalities while those without this sSMC localization have a structurally normal heart.
49,XXXXY syndrome is an extremely rare aneuploidic sex chromosomal abnormality. It occurs in approximately 1 out of 85,000 to 100,000 males. This syndrome is the result of maternal non-disjunction during both meiosis I and II. It was first diagnosed in 1960 and was coined Fraccaro syndrome after the researcher.
A dicentric chromosome is an abnormal chromosome with two centromeres. It is formed through the fusion of two chromosome segments, each with a centromere, resulting in the loss of acentric fragments and the formation of dicentric fragments. The formation of dicentric chromosomes has been attributed to genetic processes, such as Robertsonian translocation and paracentric inversion. Dicentric chromosomes have important roles in the mitotic stability of chromosomes and the formation of pseudodicentric chromosomes. Their existence has been linked to certain natural phenomena such as irradiation and have been documented to underlie certain clinical syndromes, notably Kabuki syndrome. The formation of dicentric chromosomes and their implications on centromere function are studied in certain clinical cytogenetics laboratories.
Boomerang dysplasia is a lethal form of osteochondrodysplasia known for a characteristic congenital feature in which bones of the arms and legs are malformed into the shape of a boomerang. Death usually occurs in early infancy due to complications arising from overwhelming systemic bone malformations.
Angelman syndrome (AS) is a genetic disorder that mainly affects the nervous system. Symptoms include a small head and a specific facial appearance, severe intellectual disability, developmental disability, limited to no functional speech, balance and movement problems, seizures, and sleep problems. Children usually have a happy personality and have a particular interest in water. The symptoms generally become noticeable by one year of age.
Klinefelter syndrome (KS), also known as 47,XXY, is a chromosome anomaly where a male has an extra X chromosome. These complications commonly include infertility and small, poorly functioning testicles. These symptoms are often noticed only at puberty, although this is one of the most common chromosomal disorders, occurring in one to two per 1,000 live births. It is named after American endocrinologist Harry Klinefelter, who identified the condition in the 1940s.
Hydrops-ectopic calcification-moth-eaten skeletal dysplasia is a defect in cholesterol biosynthesis. Greenberg characterized the condition in 1988.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
8p23.1 duplication syndrome is a rare genetic disorder caused by a duplication of a region from human chromosome 8. This duplication syndrome has an estimated prevalence of 1 in 64,000 births and is the reciprocal of the 8p23.1 deletion syndrome. The 8p23.1 duplication is associated with a variable phenotype including one or more of speech delay, developmental delay, mild dysmorphism, with prominent forehead and arched eyebrows, and congenital heart disease (CHD).
46,XX/46,XY is a chimeric genetic condition characterized by the presence of some cells that express a 46,XX karyotype and some cells that express a 46,XY karyotype in a single human being. The cause of the condition lies in utero with the aggregation of two distinct blastocysts or zygotes into a single embryo, which subsequently leads to the development of a single individual with two distinct cell lines, instead of a pair of fraternal twins. 46,XX/46,XY chimeras are the result of the merging of two non-identical twins. This is not to be confused with mosaicism or hybridism, neither of which are chimeric conditions.
XXXYsyndrome is a genetic condition characterized by a sex chromosome aneuploidy, where individuals have two extra X chromosomes. People in most cases have two sex chromosomes: an X and a Y or two X chromosomes. The presence of one Y chromosome with a functioning SRY gene causes the expression of genes that determine maleness. Because of this, XXXY syndrome only affects males. The additional two X chromosomes in males with XXXY syndrome causes them to have 48 chromosomes, instead of the typical 46. XXXY syndrome is therefore often referred to as 48,XXXY. There is a wide variety of symptoms associated with this syndrome, including cognitive and behavioral problems, taurodontism, and infertility. This syndrome is usually inherited via a new mutation in one of the parents' gametes, as those affected by it are usually infertile. It is estimated that XXXY affects one in every 50,000 male births.
XYYY syndrome, also known as 48,XYYY, is a chromosomal disorder in which a male has two extra copies of the Y chromosome. The syndrome is exceptionally rare, with only twelve recorded cases. The presentation of the syndrome is heterogeneous, but appears to be more severe than its counterpart XYY syndrome. Common traits include borderline to mild intellectual disability, infertility, radioulnar synostosis, and in some cases tall stature.
Tetrasomy X, also known as 48,XXXX, is a chromosomal disorder in which a female has four, rather than two, copies of the X chromosome. It is associated with intellectual disability of varying severity, characteristic "coarse" facial features, heart defects, and skeletal anomalies such as increased height, clinodactyly, and radioulnar synostosis. Tetrasomy X is a rare condition, with few medically recognized cases; it is estimated to occur in approximately 1 in 50,000 females.
Pentasomy X, also known as 49,XXXXX, is a chromosomal disorder in which a female has five, rather than two, copies of the X chromosome. Pentasomy X is associated with short stature, intellectual disability, characteristic facial features, heart defects, skeletal anomalies, and pubertal and reproductive abnormalities. The condition is exceptionally rare, with an estimated prevalence between 1 in 85,000 and 1 in 250,000.
Trisomy X, also known as triple X syndrome and characterized by the karyotype 47,XXX, is a chromosome disorder in which a female has an extra copy of the X chromosome. It is relatively common and occurs in 1 in 1,000 females, but is rarely diagnosed; fewer than 10% of those with the condition know they have it.
XXXYY syndrome, also known as 49,XXXYY, is a chromosomal disorder in which a male has three copies of the X chromosome and two copies of the Y chromosome. XXXYY syndrome is exceptionally rare, with only eight recorded cases. Little is known about its presentation, but associated characteristics include intellectual disability, anomalies of the external genitalia, and characteristic physical and facial features. It is not caused by characteristics of the parents, but rather occurs via nondisjunction, a random event in gamete development. The karyotype observed in the syndrome is formally known as 49,XXXYY, which represents the 49 chromosomes observed in the disorder as compared to the 46 in normal human development.
Hormones, Brain Development, and Neurodevelopmental Performance. The Colloquium Digital Library of Life Sciences. October 11, 2016
Mitchell, F., and Gropman, A. (2020). Neurodevelopmental outcome of prenatally diagnosed boys with 47,XXY (Klinefelter syndrome) and the potential influence of early hormonal therapy (EHT). Am J Med Genet Part A. [Epub ahead of print].
Sadeghin, T. (2020). A Review of the Intriguing Interaction Between Testosterone and Neurocognitive Development in males with 47,XXY. Curr Opin Obstet Gynecol. 32(2):140-146. doi: 10.1097/GCO.0000000000000612.
Hormonal replacement therapy and its potential influence on working memory and competency/adaptive functioning in 47,XXY (Klinefelter syndrome). Am J Med Genet A. 179(12):2374-2381. Doi:10.1002/ajmg.a.61360.
Gropman, A.L. (2019). Investigating the impact of early diagnosis and non-invasive prenatal testing (NIPT): Knowledge, attitudes, and experiences of parents of children with sex chromosome aneuploidies (SCAs). Prenat Diagn. 40(4):470-480. doi: 10.1002/pd.5580.
G.F.,Gropman, A.L. (2019). Update on the clinical perspectives and care of the child with 47,XXY (Klinefelter syndrome). App Clin Genet, 12, 191–202. Doi:10.2147/TACG.S189450
incidence of anxiety symptoms in boys with 47,XXY (Klinefelter syndrome) and the possible impact of timing of diagnosis and hormonal replacement therapy. Am J Med Genet Pt A. 179(3):423-428. https://doi.org/10.1002/ajmg.a.61038
Investigation of Neurocognitive and Behavioral Phenotype in 47,XXY (Klinefelter syndrome): Predicting Individual Differences. Am J Med Genet Pt A.76(4):877-885. https://doi.org/10.1002/ajmg.a.38621.
prenatal diagnosis of sex chromosome aneuploidy before and after non-invasive prenatal testing. Prenat Diagn. 38(13):1062-1068.
chromosome aneuploidies detected by noninvasive prenatal testing (NIPT): Accuracy and patient decision-making. Prenat Diagn. 38(11):841-848.
cell-free DNA screening for 47,XXY (Klinefelter syndrome). Prenat Diagn. 37(5), 497–501.
for 47, XXY (Klinefelter syndrome). Prenat Diag. 37(5):497-501. doi: 10.1002/pd.5044.
Intragenic KANSL1 Mutation, no KANSL1-related Intellectual Disability, and Preserved Verbal Intelligence. Am J of Med Genet Pt A. 173(3):762-765. doi: 10.1002/ajmg.a.38080.
S; Gropman, A. (2016). Incidence of X and Y Chromosomal Aneuploidy in a Large Child Bearing Population. Public Library of Science (Plos ONE), 11(8), 1–11. doi:10.1371/journal.pone.0161045.
Gropman, A. (2015). Expanding the Phenotypic Profile of Kleefstra Syndrome: A Female with low-average Intelligence and Childhood Apraxia of Speech. Am J Med Genet Part A, 170(5), 1312, doi:10.1002/ajmg.a.37575.
Gropman AL. (2015). Positive effects of early androgen therapy on the behavioral phenotype of boys with 47,XXY. Am J Med Genet Part C 169C:150–157.
Neurodevelopmental variability in three young girls with a rare chromosomal disorder, 48, XXXX. Am J Med Genet Part A 9999A:1–9.
Gropman, A. L. (2014). Expanding the Phenotypic Profile of Boys with XXY – Is it all about the X?, Am J Med Genet Part A. 164(6):1464-9. doi: 10.1002/ajmg.a.36483.
Sadeghin, T., Jameson, R., Parmele, C. L., Gropman, A. L. (2014). Early Identification of Infants and Toddlers At Risk for Autism Spectrum Disorder (ASD) and Developmental Language Disorder (DLD), Autism.
underpinnings of the X and Y chromosomal variations. Am J Med Genet Pt C Semin Med Genet. 163(1):35-43.
MP, Westemeyer M, Saucier J, Demko Z, Rabinowitz M. (2013). SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. Prenat Diagn. 33(7):643-9. doi: 10.1002/pd.4159.
and Gropman, AG. (2012). Positive Effects of Short Course Androgen Therapy on the Neurodevelopmental Outcome In Boys with 47,XXY Syndrome at 36 and 72 Months of Age. Am J Med Genet Pt A. 161(3):501-8.DOI: 10.1002/ajmg.a.35769.
Paul A. Law. (2012). Survey of Vaccine Beliefs and Practices Among Families Affected by Autism Spectrum Disorders. CLIN PEDIATR.
Rogol, A. (2011). Early Effects of Short Course Androgen Therapy on Children with 49,XXXXY Syndrome on Neurodevelopmental Profile. Acta Pædiatrica. 100(6):861-5.
J.L. (2008). "Klinefelter Syndrome." Management of Genetic Syndromes. 3rd Edition, Eds. Cassidy, S.B., Allanson, J.E. Wiley-Liss.
Frontal Lobe: Functions and Disorders, 2nd Edition. Eds. Miller, BL and Cummings, JL Guilford Press, New York.
meiotic errors cause aneuploidy; how aneuploidy causes meiotic errors. Curr Opin Genet Dev. 16(3), 323–329.
Graham JM, Hassold T, Aylstock M, et al. (2003). Klinefelter syndrome: Expanding the phenotype and identifying new research directions. Genet Med. 5(6):460–468.
Prototype for Infantile Presentation of Developmental Dyspraxia (IDD).” Infants and Young Children.
rates of and indicated for postnatal diagnosis with implications for prenatal counseling. Prenat Diag. 17: 363–368.