Therapeutic interfering particle

Last updated

A therapeutic interfering particle is an antiviral preparation that reduces the replication rate and pathogenesis of a particular viral infectious disease. A therapeutic interfering particle is typically a biological agent (i.e., nucleic acid) engineered from portions of the viral genome being targeted. Similar to Defective Interfering Particles (DIPs), the agent competes with the pathogen within an infected cell for critical viral replication resources, reducing the viral replication rate and resulting in reduced pathogenesis. [1] [2] But, in contrast to DIPs, TIPs are engineered to have an in vivo basic reproductive ratio (R0) that is greater than 1 (R0>1). [3] The term "TIP" was first introduced in 2011 [4] based on models of its mechanism-of-action from 2003. [3] Given their unique R0>1 mechanism of action, TIPs exhibit high barriers to the evolution of antiviral resistance [5] and are predicted to be resistance proof. [4] Intervention with therapeutic interfering particles can be prophylactic (to prevent or ameliorate the effects of a future infection), or a single-administration therapeutic (to fight a disease that has already occurred, such as HIV or COVID-19). [6] [4] [3] [7] [5] Synthetic DIPs that rely on stimulating innate antiviral immune responses (i.e., interferon) were proposed for influenza in 2008 [8] and shown to protect mice to differing extents [9] [10] [11] but are technically distinct from TIPs due to their alternate molecular mechanism of action which has not been predicted to have a similarly high barrier to resistance. [12] Subsequent work tested the pre-clinical efficacy of TIPs against HIV, [6] a synthetic DIP for SARS-CoV-2 (in vitro), [7] and a TIP for SARS-CoV-2 (in vivo). [5] [13]

Contents

Mechanism of action

Therapeutic Interfering Particles, often referred to as TIPs, are typically synthetic, engineered versions of naturally occurring defective interfering particles (DIPs), in which critical portions of the virus genome are deleted rendering the TIP unable to replicate on its own. Often a TIP has the vast majority of the virus genome deleted. [5] However, TIPs are engineered to retain specific elements of the genome that allow them to efficiently compete with the wild-type virus for critical replication resources inside an infected cell. TIPs thereby deprive wild-type virus of replication material through competitive inhibition, [14] and therapeutically reduce viral load. [6] Competitive inhibition enables TIPs to conditionally replicate and efficiently mobilize between cells, essentially "piggybacking" on wild-type virus, to act as single-administration antivirals with a high genetic barrier to the evolution of resistance. [15] TIPs have been engineered for HIV [6] [14] and SARS-CoV-2, [7] and do not induce innate immune responses such as interferon [5]

Three mechanistic criteria define a TIP:

  1. Conditional replication: Due to a lack of genes required for replication, TIPs cannot self-replicate. However, when wild-type virus is present in the same cell (i.e., there is a superinfection of the cell), it provides the missing intracellular replication resources, allowing TIPs to conditionally replicate. [4] In molecular genetics terms, the wild-type virus is said to provide complementation in trans.
  2. Interference via competitive inhibition: TIPs reduce wild-type virus replication specifically by competing for intracellular viral replication resources (e.g., packaging proteins like the capsid). This mechanism of action reduces wild-type virus burst size and provides TIPs with a high genetic barrier to the evolution of viral resistance. [4]
  3. Mobilization with R0>1: when a TIP is conditionally activated by the wild-type "helper" virus in a super-infected cell, it will generate virus-like particles (VLPs). These TIP VLPs mobilize from the cell, are phenotypically identical to the virus being targeted, and can transduce new target cells. The central requirement for a therapeutic interfering particle is that it mobilizes with a basic reproductive ratio (R0) that is greater than 1 (R0>1). That is, for every TIP-producing cell, more than one new TIP-transduced cell must be generated. This third characteristic differentiates TIPs from naturally occurring DIPs. [4] [3] [6] [16] [12]

As a result of these mechanistic criteria, TIPs have been referred to as "piggyback" [17] or alternatively as "virus hijackers". [18] [19]

TIPs do not stimulate or function through the induction of innate cellular immune responses (such as interferon). In fact, stimulation of innate cellular antiviral mechanisms has been shown to contravene criterion (#3) (i.e., R0>1), as innate immune mechanisms inhibit efficient mobilization of TIPs. [3] As such, several VLP-based therapy proposals for influenza and other viruses [20] that do not satisfy these criteria are DIPs, but not TIPs.

History

TIPs are built off the phenomenon of defective interfering particles (DIPs) discovered by Preben Von Magnus in the early 1950s, during his work on influenza viruses. [21] [22] [23] [2] DIPs are spontaneously arising virus mutants, first described by von Magnus as "incomplete" viruses, in which a critical portion of the viral genome has been lost. Direct evidence for DIPs was only found in the 1960s by Hackett, who observed the presence of "stumpy" particles of vesicular stomatitis virus in electron micrographs, [24] and the DIP terminology was formalized in 1970 by Huang and Baltimore. [25] DIPs have been reported for many classes of DNA and RNA viruses in clinical and laboratory settings.

Whereas DIPs had been proposed as potential therapeutics that would act via stimulation of the immune system [20] – a concept [8] [26] tested in influenza with mixed results [9] [10] – the TIP R0>1 mechanism of action was first proposed in 2003 [3] with the term “TIP” and the unique benefits of the R0>1 mechanism shown in 2011. [4]

In 2016 the US government launched a major funding initiative (DARPA INTERCEPT, [26] [27] [28] ) to discover and engineer antiviral TIPs for diverse viruses, based on prior investments from the US National Institutes of Health. [29] This program led to renewed interest in the concept of interfering particles as therapies with the development of technologies to isolate DIPs for influenza [30] [31] [32] and engineer TIPs for HIV and Zika virus. [14] The first successful experimental demonstration of the TIP concept was reported in 2019 [6] for HIV, and the discovery of a TIP for SARS-CoV-2 was reported in 2020 [7] and results on the effect on hamsters in 2021. [33] In 2020, the US government funded first-in-human clinical trials of TIPs. [34] [35]

Related Research Articles

<span class="mw-page-title-main">Antiviral drug</span> Medication used to treat a viral infection

Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are one class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from virucides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural virucides are produced by some plants such as eucalyptus and Australian tea trees.

Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. Viruses have short generation times, and many—in particular RNA viruses—have relatively high mutation rates. Although most viral mutations confer no benefit and often even prove deleterious to viruses, the rapid rate of viral mutation combined with natural selection allows viruses to quickly adapt to changes in their host environment. In addition, because viruses typically produce many copies in an infected host, mutated genes can be passed on to many offspring quickly. Although the chance of mutations and evolution can change depending on the type of virus, viruses overall have high chances for mutations.

<span class="mw-page-title-main">Defective interfering particle</span>

Defective interfering particles (DIPs), also known as defective interfering viruses, are spontaneously generated virus mutants in which a critical portion of the particle's genome has been lost due to defective replication or non-homologous recombination. The mechanism of their formation is presumed to be as a result of template-switching during replication of the viral genome, although non-replicative mechanisms involving direct ligation of genomic RNA fragments have also been proposed. DIPs are derived from and associated with their parent virus, and particles are classed as DIPs if they are rendered non-infectious due to at least one essential gene of the virus being lost or severely damaged as a result of the defection. A DIP can usually still penetrate host cells, but requires another fully functional virus particle to co-infect a cell with it, in order to provide the lost factors.

<i>Adenoviridae</i> Family of viruses

Adenoviruses are medium-sized, nonenveloped viruses with an icosahedral nucleocapsid containing a double-stranded DNA genome. Their name derives from their initial isolation from human adenoids in 1953.

Viral pathogenesis is the study of the process and mechanisms by which viruses cause diseases in their target hosts, often at the cellular or molecular level. It is a specialized field of study in virology.

<span class="mw-page-title-main">Polydnavirus</span> Family of viruses

A polydnavirus (PDV) or more recently, polydnaviriform is a member of the family Polydnaviridae of insect viruses. There are two genera in the family: Bracovirus and Ichnovirus. Polydnaviruses form a symbiotic relationship with parasitoid wasps;. The larvae of wasps in both of those groups are themselves parasitic on Lepidoptera, and the polydnaviruses are important in circumventing the immune response of their parasitized hosts. Little or no sequence homology exists between BV and IV, suggesting that the two genera have been evolving independently for a long time.

<span class="mw-page-title-main">APOBEC3G</span> Protein and coding gene in humans

APOBEC3G is a human enzyme encoded by the APOBEC3G gene that belongs to the APOBEC superfamily of proteins. This family of proteins has been suggested to play an important role in innate anti-viral immunity. APOBEC3G belongs to the family of cytidine deaminases that catalyze the deamination of cytidine to uridine in the single stranded DNA substrate. The C-terminal domain of A3G renders catalytic activity, several NMR and crystal structures explain the substrate specificity and catalytic activity.

<span class="mw-page-title-main">Viral entry</span> Earliest stage of infection in the viral life cycle

Viral entry is the earliest stage of infection in the viral life cycle, as the virus comes into contact with the host cell and introduces viral material into the cell. The major steps involved in viral entry are shown below. Despite the variation among viruses, there are several shared generalities concerning viral entry.

<span class="mw-page-title-main">Antibody-dependent enhancement</span> Antibodies rarely making an infection worse instead of better

Antibody-dependent enhancement (ADE), sometimes less precisely called immune enhancement or disease enhancement, is a phenomenon in which binding of a virus to suboptimal antibodies enhances its entry into host cells, followed by its replication. The suboptimal antibodies can result from natural infection or from vaccination. ADE may cause enhanced respiratory disease, but is not limited to respiratory disease. It has been observed in HIV, RSV virus and Dengue virus and is monitored for in vaccine development.

<span class="mw-page-title-main">Viral shedding</span> Dissemination of mature virions from host cell

Viral shedding is the expulsion and release of virus progeny following successful reproduction during a host cell infection. Once replication has been completed and the host cell is exhausted of all resources in making viral progeny, the viruses may begin to leave the cell by several methods.

Intrinsic immunity refers to a set of cellular-based anti-viral defense mechanisms, notably genetically encoded proteins which specifically target eukaryotic retroviruses. Unlike adaptive and innate immunity effectors, intrinsic immune proteins are usually expressed at a constant level, allowing a viral infection to be halted quickly. Intrinsic antiviral immunity refers to a form of innate immunity that directly restricts viral replication and assembly, thereby rendering a cell non-permissive to a specific class or species of viruses. Intrinsic immunity is conferred by restriction factors preexisting in certain cell types, although these factors can be further induced by virus infection. Intrinsic viral restriction factors recognize specific viral components, but unlike other pattern recognition receptors that inhibit viral infection indirectly by inducing interferons and other antiviral molecules, intrinsic antiviral factors block viral replication immediately and directly.

<span class="mw-page-title-main">Virus</span> Infectious agent that replicates in cells

A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's 1892 article describing a non-bacterial pathogen infecting tobacco plants and the discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 11,000 of the millions of virus species have been described in detail. Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. The study of viruses is known as virology, a subspeciality of microbiology.

A neutralizing antibody (NAb) is an antibody that defends a cell from a pathogen or infectious particle by neutralizing any effect it has biologically. Neutralization renders the particle no longer infectious or pathogenic. Neutralizing antibodies are part of the humoral response of the adaptive immune system against viruses, intracellular bacteria and microbial toxin. By binding specifically to surface structures (antigen) on an infectious particle, neutralizing antibodies prevent the particle from interacting with its host cells it might infect and destroy.

Pseudotyping is the process of producing viruses or viral vectors in combination with foreign viral envelope proteins. The result is a pseudotyped virus particle, also called a pseudovirus. With this method, the foreign viral envelope proteins can be used to alter host tropism or increase or decrease the stability of the virus particles. Pseudotyped particles do not carry the genetic material to produce additional viral envelope proteins, so the phenotypic changes cannot be passed on to progeny viral particles. In some cases, the inability to produce viral envelope proteins renders the pseudovirus replication incompetent. In this way, the properties of dangerous viruses can be studied in a lower risk setting.

Adolfo García-Sastre,(born in Burgos, 10 October 1964) is a Spanish professor of Medicine and Microbiology and co-director of the Global Health & Emerging Pathogens Institute at the Icahn School of Medicine at Mount Sinai in New York City. His research into the biology of influenza viruses has been at the forefront of medical advances in epidemiology.

Leor S. Weinberger is an American virologist and quantitative biologist. He is credited with discovering the HIV virus latency circuit, which provided the first experimental evidence that stochastic fluctuations ('noise') in gene expression are used for cell fate decisions. He has also pioneered the concept of therapeutic interfering particles, or “TIPs”, which are resistance-proof antivirals. His TED talk on this novel antiviral approach 20 years in the making has been called a "highlight" of TED and received a standing ovation from the live audience.

<span class="mw-page-title-main">Viroporin</span>

Viroporins are small and usually hydrophobic multifunctional viral proteins that modify cellular membranes, thereby facilitating virus release from infected cells. Viroporins are capable of assembling into oligomeric ion channels or pores in the host cell's membrane, rendering it more permeable and thus facilitating the exit of virions from the cell. Many viroporins also have additional effects on cellular metabolism and homeostasis mediated by protein-protein interactions with host cell proteins. Viroporins are not necessarily essential for viral replication, but do enhance growth rates. They are found in a variety of viral genomes but are particularly common in RNA viruses. Many viruses that cause human disease express viroporins. These viruses include hepatitis C virus, HIV-1, influenza A virus, poliovirus, respiratory syncytial virus, and SARS-CoV.

HSV epigenetics is the epigenetic modification of herpes simplex virus (HSV) genetic code.

Eric Murnane Poeschla is an American infectious disease physician, virologist, and innate immunologist.

Catherine Blish is a translational immunologist and professor at Stanford University. Her lab works on clinical immunology and focuses primarily on the role of the innate immune system in fighting infectious diseases like HIV, dengue fever, and influenza. Her immune cell biology work characterizes the biology and action of Natural Killer (NK) cells and macrophages.

References

  1. Huang, Alice S.; Baltimore, David (April 1970). "Defective Viral Particles and Viral Disease Processes". Nature. 226 (5243): 325–327. Bibcode:1970Natur.226..325H. doi:10.1038/226325a0. ISSN   1476-4687. PMID   5439728. S2CID   4184206.
  2. 1 2 Von Magnus P (1952). "Propagation of the PR8 strain of influenza A virus in chick embryos. IV. Studies on the factors involved in the formation of incomplete virus upon serial passage of undiluted virus". Acta Pathologica et Microbiologica Scandinavica. 30 (3–4): 311–335. PMID   14933064.
  3. 1 2 3 4 5 6 Weinberger LS, Schaffer DV, Arkin AP (September 2003). "Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection". Journal of Virology. 77 (18): 10028–10036. doi:10.1128/jvi.77.18.10028-10036.2003. PMC   224590 . PMID   12941913.
  4. 1 2 3 4 5 6 7 Metzger VT, Lloyd-Smith JO, Weinberger LS (March 2011). "Autonomous targeting of infectious superspreaders using engineered transmissible therapies". PLOS Computational Biology. 7 (3): e1002015. Bibcode:2011PLSCB...7E2015M. doi: 10.1371/journal.pcbi.1002015 . PMC   3060167 . PMID   21483468.
  5. 1 2 3 4 5 Chaturvedi S, Vasen G, Pablo M, Chen X, Beutler N, Kumar A, et al. (December 2021). "Identification of a therapeutic interfering particle-A single-dose SARS-CoV-2 antiviral intervention with a high barrier to resistance". Cell. 184 (25): 6022–6036.e18. doi:10.1016/j.cell.2021.11.004. PMC   8577993 . PMID   34838159.
  6. 1 2 3 4 5 6 Tanner EJ, Jung SY, Glazier J, Thompson C, Zhou Y, Martin B, Son HI, Riley JL, Weinberger LS (January 2019). "Discovery and Engineering of a Therapeutic Interfering Particle (TIP): a combination self-renewing antiviral". bioRxiv: 820456. doi:10.1101/820456. S2CID   208600143.
  7. 1 2 3 4 Yao S, Narayanan A, Majowicz SA, Jose J, Archetti M (2020-11-23). "A synthetic defective interfering SARS-CoV-2". PeerJ. 9: e11686. bioRxiv   10.1101/2020.11.22.393587 . doi: 10.7717/peerj.11686 . PMC   8255065 . PMID   34249513.
  8. 1 2 Dimmock NJ, Rainsford EW, Scott PD, Marriott AC (September 2008). "Influenza virus protecting RNA: an effective prophylactic and therapeutic antiviral". Journal of Virology. 82 (17): 8570–8578. doi:10.1128/JVI.00743-08. PMC   2519629 . PMID   18579602.
  9. 1 2 Dimmock NJ, Dove BK, Scott PD, Meng B, Taylor I, Cheung L, et al. (2012-12-12). "Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established". PLOS ONE. 7 (12): e49394. Bibcode:2012PLoSO...749394D. doi: 10.1371/journal.pone.0049394 . PMC   3521014 . PMID   23251341.
  10. 1 2 Dimmock NJ, Dove BK, Meng B, Scott PD, Taylor I, Cheung L, et al. (December 2012). "Comparison of the protection of ferrets against pandemic 2009 influenza A virus (H1N1) by 244 DI influenza virus and oseltamivir". Antiviral Research. 96 (3): 376–385. doi:10.1016/j.antiviral.2012.09.017. PMC   3526778 . PMID   23041142.
  11. Scott PD, Meng B, Marriott AC, Easton AJ, Dimmock NJ (September 2011). "Defective interfering influenza virus confers only short-lived protection against influenza virus disease: evidence for a role for adaptive immunity in DI virus-mediated protection in vivo". Vaccine. 29 (38): 6584–6591. doi:10.1016/j.vaccine.2011.06.114. PMC   3163266 . PMID   21762748.
  12. 1 2 Notton T, Sardanyés J, Weinberger AD, Weinberger LS (August 2014). "The case for transmissible antivirals to control population-wide infectious disease". Trends in Biotechnology. 32 (8): 400–405. doi:10.1016/j.tibtech.2014.06.006. PMID   25017994.
  13. Chaturvedi, Sonali; Beutler, Nathan; Vasen, Gustavo; Pablo, Michael; Chen, Xinyue; Calia, Giuliana; Buie, Lauren; Rodick, Robert; Smith, Davey; Rogers, Thomas; Weinberger, Leor S. (27 September 2022). "A single-administration therapeutic interfering particle reduces SARS-CoV-2 viral shedding and pathogenesis in hamsters". Proceedings of the National Academy of Sciences. 119 (39): e2204624119. Bibcode:2022PNAS..11904624C. doi:10.1073/pnas.2204624119. ISSN   0027-8424. PMC   9522362 . PMID   36074824.
  14. 1 2 3 Notton T, Glazier JJ, Saykally VR, Thompson CE, Weinberger LS (January 2021). "RanDeL-Seq: a High-Throughput Method to Map Viral cis- and trans-Acting Elements". mBio. 12 (1): e01724–20. doi:10.1128/mBio.01724-20. PMC   7845639 . PMID   33468683.
  15. Rouzine IM, Weinberger LS (February 2013). "Design requirements for interfering particles to maintain coadaptive stability with HIV-1". Journal of Virology. 87 (4): 2081–2093. doi:10.1128/JVI.02741-12. PMC   3571494 . PMID   23221552.
  16. Tanner EJ, Kirkegaard KA, Weinberger LS (May 2016). "Exploiting Genetic Interference for Antiviral Therapy". PLOS Genetics. 12 (5): e1005986. doi: 10.1371/journal.pgen.1005986 . PMC   4858160 . PMID   27149616.
  17. Mosher D. "Piggyback Virus Could Curb HIV Pandemic". Wired.
  18. Weinberger L (March 2020). "Can we create vaccines that mutate and spread?". TED Talks. TED Conferences, LLC.
  19. Hollingham R (19 August 2004). "The virus hijacker". The Times.
  20. 1 2 Dimmock NJ, Easton AJ (May 2014). "Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals?". Journal of Virology. 88 (10): 5217–5227. doi:10.1128/JVI.03193-13. PMC   4019098 . PMID   24574404.
  21. von Magnus P (1951). "Propagation of the PR8 strain of influenza A virus in chick embryos. II. The formation of incomplete virus following inoculation of large doses of seed virus". Acta Pathologica et Microbiologica Scandinavica. 28 (3): 278–293. doi:10.1111/j.1699-0463.1951.tb03693.x. PMID   14856732.
  22. Von Magnus P (1951). "Propagation of the PR8 strain of influenza A virus in chick embryos. III. Properties of the incomplete virus produced in serial passages of undiluted virus". Acta Pathologica et Microbiologica Scandinavica. 29 (2): 157–181. doi:10.1111/j.1699-0463.1951.tb00114.x. PMID   14902470.
  23. Von Magnus P (1954). "Incomplete forms of influenza virus". Advances in Virus Research. 2: 59–79. doi:10.1016/s0065-3527(08)60529-1. ISBN   9780120398027. PMID   13228257.
  24. Hackett AJ (September 1964). "A possible morphologic basis for the autointerference phenomenon in vesicular stomatitis virus". Virology. 24: 51–59. doi:10.1016/0042-6822(64)90147-3. PMID   14208902.
  25. Huang AS, Baltimore D (April 1970). "Defective viral particles and viral disease processes". Nature. 226 (5243): 325–327. Bibcode:1970Natur.226..325H. doi:10.1038/226325a0. PMID   5439728. S2CID   4184206.
  26. 1 2 Jenkins A. "INTERfering and Co-Evolving Prevention and Therapy (INTERCEPT)". Defense Advanced Research Projects Agency. U.S. Department of Defense.
  27. "DARPA INTERCEPT Program for Biodefense Countermeasures". 11 April 2016.
  28. Bloomfield D (14 July 2016). "To Fight a Virus, Get a Virus: Military Bets on Mutant Pathogen". Bloomberg.
  29. Dawson R (6 January 2014). "Weinberger receives 2013 NIH Director's Pioneer Award". UCSF School of Pharmacy. University of California - San Francisco.
  30. Rand U, Kupke SY, Shkarlet H, Hein MD, Hirsch T, Marichal-Gallardo P, et al. (July 2021). "Antiviral Activity of Influenza A Virus Defective Interfering Particles against SARS-CoV-2 Replication In Vitro through Stimulation of Innate Immunity". Cells. 10 (7): 1756. doi: 10.3390/cells10071756 . PMC   8303422 . PMID   34359926.
  31. Pelz L, Rüdiger D, Dogra T, Alnaji FG, Genzel Y, Brooke CB, et al. (November 2021). "Semi-continuous Propagation of Influenza A Virus and Its Defective Interfering Particles: Analyzing the Dynamic Competition To Select Candidates for Antiviral Therapy". Journal of Virology. 95 (24): e0117421. doi:10.1128/JVI.01174-21. PMC   8610589 . PMID   34550771.
  32. Tapia F, Laske T, Wasik MA, Rammhold M, Genzel Y, Reichl U (2019). "Production of Defective Interfering Particles of Influenza A Virus in Parallel Continuous Cultures at Two Residence Times-Insights From qPCR Measurements and Viral Dynamics Modeling". Frontiers in Bioengineering and Biotechnology. 7: 275. doi: 10.3389/fbioe.2019.00275 . PMC   6813217 . PMID   31681751.
  33. Marriott AC, Dimmock NJ (January 2010). "Defective interfering viruses and their potential as antiviral agents". Reviews in Medical Virology. 20 (1): 51–62. doi:10.1002/rmv.641. PMID   20041441. S2CID   26359078.
  34. "Joint Warfighter Medical". Congressionally Directed Medical Research Programs (CDMRP). FY20 Military Medical Research and Development Award - Human Subjects/Sample Acquisition with Clinical Trial Option
  35. "DARPA Seeks First-in-Human Therapeutic Interfering Particles Targeting Respiratory Viruses". Global Biodefense. 27 May 2019.