Thermal manikin

Last updated
A thermal manikin being used to test helmet padding Military helmet (3633205430).jpg
A thermal manikin being used to test helmet padding

The thermal manikin is a human model designed for scientific testing of thermal environments without the risk or inaccuracies inherent in human subject testing. Thermal manikins are primarily used in automotive, indoor environment, outdoor environment, military and clothing research. The first thermal manikins in the 1940s were developed by the US Army and consisted of one whole-body sampling zone. Modern-day manikins can have over 30 individually controlled zones. Each zone (right hand, pelvis, etc.) contains a heating element and temperature sensors within the “skin” of the manikin. This allows the control software to heat the manikin to a normal human body temperature, while logging the amount of power necessary to do so in each zone and the temperature of that zone.

Contents

History

Clothing insulation is the thermal insulation provided by clothing and it is measured in clo. The measuring unit was developed in 1941. [1] Shortly afterward, thermal manikins were developed by the US Army for the purposes of carrying out insulation measurements on the gear they were developing. The first thermal manikins were standing, made of copper, and were one segment, measuring whole-body heat loss. Over the years these were improved upon by various companies and individuals employing new technologies and techniques as understanding of thermal comfort increased. In the mid-1960s, seated and multi-segmented thermal manikins were developed, and digital regulation was employed, allowing for much more accurate power application and measurement. Over time breathing, sneezing, moving (such as continuous walking or biking motions) and sweating were all employed in the manikins, in addition to male, female, and child sizes depending on the application. Nowadays most manikins used for research purposes will have a minimum of 15 zones, and as many as 34 with options (often as a purchasable add-on to the base manikin) for sweating, breathing, and movement systems although simpler manikins are also in use in the clothing industry. [2] Additionally, in the early 2000s several different computer models of manikins were developed in Hong Kong, [3] the UK, [4] and Sweden. [5]

The following table gives an overview of different thermal manikin developments through the years: [2]

TypeMaterialMeasurement MethodAdjustabilityDevelopment location and time
One-segmentCopperAnalogueUS 1945
Multi-segmentAluminiumAnalogueUK 1964
Radiation manikinAluminiumAnalogueFrance 1972
Multi-segmentPlasticsAnalogueMovableDenmark 1973
Multi-segmentPlasticsAnalogueMovableGermany 1978
Multi-segmentPlasticsDigitalMovableSweden 1980
Multi-segmentPlasticsDigitalMovableSweden 1984
Fire manikinAluminiumDigitalUS
Immersion manikinAluminiumDigitalMovableCanada 1988
Sweating manikinAluminiumDigitalJapan 1988
PlasticDigitalMovableFinland 1988
AluminiumDigitalMovableUSA 1996
Female manikinPlasticsDigital, comfort regulation modeMovableDenmark 1989
Single wire
Breathing thermal manikinPlasticsDigital, comfort regulation modeMovable, breathing simulationDenmark 1996
Single wire
Sweating manikinPlasticDigital, 30 dry and 125 sweat zonesRealistic movementsSwitzerland 2001
Self-contained, sweating field manikinMetalDigital, 126 zonesArticulatedUSA 2003
Virtual, computer manikinNumerical, geometric modelHeat and mass transfer simulationsArticulatedChina 2000
Numerical, geometric modelHeat and mass transfer simulationsArticulatedUK 2001
Numerical, geometric modelHeat and mass transfer simulationsArticulatedSweden 2001
Numerical, geometric modelHeat and mass transfer simulationsArticulatedJapan 2002
One-segment, sweating manikinBreathable fabricDigital, water heatedMovableChina 2001
One-segment manikinWindproof fabricDigital, air heatedMovableUSA 2003

Design

An automotive manikin used for testing comfort U.S. Department of Energy - Science - 298 028 001 (9525144878).jpg
An automotive manikin used for testing comfort

Modern thermal manikins consist of three main elements, with optional additional add-ons. The exterior skin of the manikin may be made of fiberglass, polyester, carbon fiber, or other heat conducting materials, within which are temperature sensors in each measurement zone. Underneath the skin is the heating element. Each zone of a thermal manikin is designed to be heated as evenly as possible. To achieve this, wiring is coiled throughout the interior of the manikin with as few gaps as possible. Electricity is run through the wire to heat it, with the power use of each zone being separate controlled and recorded by the manikin control software. Finally, the manikins are designed to simulate humans as accurately as possible, and so any necessary additional mass is added to the interior of the manikin and distributed as needed. Additionally, manikins may be fitted with supplemental devices that mimic human actions such as breathing, walking, or sweating.

The heating element of thermal manikins may be set up in one of three locations within the manikin: at the outer surface, within the skin of the manikin, or in the interior of the manikin. [6] The further inside the manikin the heating element is, the more stable the heat output at the skin surface will be, however the time constant of the manikin’s ability to respond to changes in the external environment will also rise as it will take longer for heat to penetrate through the system.

Control

The amount of heat supplied to thermal manikins may be controlled in three ways. In “comfort mode” the PMV model equation found in ISO 7730 is applied to the manikin, and the controller software calculates the heat loss an average person would be comfortable undergoing within a given environment. This requires that the system know several basic facts about the manikin (surface area, hypothesized metabolic rate) while experimental factors must be input by the user (clothing insulation, Wet Bulb Globe Temperature). The second control method is constant heat flux from the manikin. That is, the manikin supplies a constant level of power, set by the user, and the skin temperature of the different segments is measured. The third method is that the skin temperature of the manikin is maintained constant at a user-specified value, while the power increases or decreases depending on the environmental conditions. This may arguably be considered a fourth method as well, as one can set the entire manikin to maintain the same temperature in all zones, or choose specific temperatures for each zone. Of these methods, the comfort mode is considered to be the most accurate representation of the actual heat distribution across the human body, while the heat flux mode is primarily used in high temperature settings (when room temperatures are likely to be above 34 °C). [7]

Calibration

Temperature sensors

To obtain the most accurate results possible it is necessary to calibrate the internal temperature sensors of the thermal manikin. A good calibration will use at least 2 temperature set points minimum 10 °C apart from one another. The manikin is set up in a thermally controlled environmental chamber so that the temperature of all its segments will be nearly identical to the operative temperature of the chamber. This means that the manikin must be unclothed and with minimal insulation between any body part and the air. A good system to achieve this is to have the manikin seated in an open chair (allowing air movement to pass through), with its feet propped up off the ground. Fans should be used to increase air movement in the chamber, ensuring constant mixing. This is acceptable for maintaining a constant temperature as there is no evaporative cooling without sweating or condensation (humidity should be low to ensure no condensation occurs). At each temperature set point the manikin will need to remain in the room for 3 to 6 hours in order to come to steady state conditions. Once equilibrium has been obtained a calibration point may be obtained for each body segment (this should be included in the control software). [8]

Equivalent temperature

The most accurate method of evaluating how the environment is affecting the thermal manikin is by calculating the equivalent temperature of the environment, accounting for the effects of radiant heat, air temperature, and air movement. It is necessary to calibrate the manikin based on this before each experiment, as the factor to convert power output and manikin skin temperature to equivalent temperature (the heat transfer coefficient) changes slightly for each zone of the manikin and based on clothing the manikin is wearing. Calibration should be carried out in a thermally controlled chamber, where radiant and air temperatures are nearly identical, and minimal temperature variation occurs throughout the space. It is necessary that the manikin be wearing the same clothing as it will during experimental tests. Multiple calibration points must be taken, minimally spanning the range of temperatures that will be tested in the experiment. During calibration air movement should be kept as low as possible, and as much of the manikin’s surface should be exposed to air and radiant heat as possible, by placing it on supports that keep it in a seated position but do not block the back or legs as a traditional seat would. Manikin data should be recorded for each calibration point when the air, surface, and manikin temperatures have all reached steady state. Temperature of the “seat” should also be recorded, and data collection should not be stopped before the seat has reached a steady state temperature. To calculate the heat transfer coefficient (hcali) the following equation is used:

   hcali = Qsi/tski – teq

where:

This factor may then be used to calculate equivalent temperature during further experiments in which radiant temperature and air velocity are not controlled using the equation:

   teq = tskiQsi/hcali

Setup

Posture, positioning, and clothing affect the thermal manikin measurements. With regard to posture, the most accurate method would be to have the manikin in precisely the same posture as it was calibrated in. Clothing affects heat transfer to the manikin and may add a layer of air insulation. Clothing reduces the effects of air velocity and changes the strength of the free convection flow around the body and face. Fitted clothing should be used if possible to decrease uncertainty of measurements as loose clothing is likely to change shape any time the manikin is moved. [7]

Related Research Articles

<span class="mw-page-title-main">Calorimeter</span> Instrument for measuring heat

A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.

<span class="mw-page-title-main">Humidity</span> Concentration of water vapour present in the air

Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">R-value (insulation)</span> Measure of how well an object, per unit of area, resists conductive flow of heat

In the context of construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Hygrometer</span> Instrument for measuring humidity

A hygrometer is an instrument which measures the humidity of air or some other gas: that is, how much water vapor it contains. Humidity measurement instruments usually rely on measurements of some other quantities such as temperature, pressure, mass, a mechanical or electrical change in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can lead to a measurement of humidity. Modern electronic devices use the temperature of condensation, or they sense changes in electrical capacitance or resistance to measure humidity differences. A crude hygrometer was invented by Leonardo da Vinci in 1480. Major leaps came forward during the 1600s; Francesco Folli invented a more practical version of the device, while Robert Hooke improved a number of meteorological devices including the hygrometer. A more modern version was created by Swiss polymath Johann Heinrich Lambert in 1755. Later, in the year 1783, Swiss physicist and Geologist Horace Bénédict de Saussure invented the first hygrometer using human hair to measure humidity.

<span class="mw-page-title-main">Thermography</span> Use of thermograms to study heat distribution in structures or regions

Infrared thermography (IRT), thermal video and/or thermal imaging, is a process where a thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are examples of infrared imaging science. Thermographic cameras usually detect radiation in the long-infrared range of the electromagnetic spectrum and produce images of that radiation, called thermograms. Since infrared radiation is emitted by all objects with a temperature above absolute zero according to the black body radiation law, thermography makes it possible to see one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature; therefore, thermography allows one to see variations in temperature. When viewed through a thermal imaging camera, warm objects stand out well against cooler backgrounds; humans and other warm-blooded animals become easily visible against the environment, day or night. As a result, thermography is particularly useful to the military and other users of surveillance cameras.

<span class="mw-page-title-main">Radiant barrier</span>

A radiant barrier is a type of building material that reflects thermal radiation and reduces heat transfer. Because thermal energy is also transferred by conduction and convection, in addition to radiation, radiant barriers are often supplemented with thermal insulation that slows down heat transfer by conduction or convection.

<span class="mw-page-title-main">Emissivity</span> Capacity of an object to radiate electromagnetic energy

The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation that most commonly includes both visible radiation (light) and infrared radiation, which is not visible to human eyes. A portion of the thermal radiation from very hot objects is easily visible to the eye.

The concept of mean radiant temperature (MRT) is used to quantify the exchange of radiant heat between a human and their surrounding environment, with a view to understanding the influence of surface temperatures on personal comfort. Mean radiant temperature has been both qualitatively defined and quantitatively evaluated for both indoor and outdoor environments.

<span class="mw-page-title-main">Infrared thermometer</span> Thermometer which infers temperature by measuring infrared energy emission

An infrared thermometer is a thermometer which infers temperature from a portion of the thermal radiation sometimes called black-body radiation emitted by the object being measured. They are sometimes called laser thermometers as a laser is used to help aim the thermometer, or non-contact thermometers or temperature guns, to describe the device's ability to measure temperature from a distance. By knowing the amount of infrared energy emitted by the object and its emissivity, the object's temperature can often be determined within a certain range of its actual temperature. Infrared thermometers are a subset of devices known as "thermal radiation thermometers".

<span class="mw-page-title-main">Underfloor heating</span> Form of central heating and cooling

Underfloor heating and cooling is a form of central heating and cooling that achieves indoor climate control for thermal comfort using hydronic or electrical heating elements embedded in a floor. Heating is achieved by conduction, radiation and convection. Use of underfloor heating dates back to the Neoglacial and Neolithic periods.

<span class="mw-page-title-main">Building insulation</span> Material to reduce heat transfer in structures

Building insulation is material used in a building to reduce the flow of thermal energy. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation. Often an insulation material will be chosen for its ability to perform several of these functions at once.

Thermal comfort is the condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. The human body can be viewed as a heat engine where food is the input energy. The human body will release excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not release enough heat. Both the hot and cold scenarios lead to discomfort. Maintaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers.

<span class="mw-page-title-main">Multi-layer insulation</span> Materials science product key to spacecraft thermal management and cryogenics

Multi-layer insulation (MLI) is thermal insulation composed of multiple layers of thin sheets and is often used on spacecraft and cryogenics. Also referred to as superinsulation, MLI is one of the main items of the spacecraft thermal design, primarily intended to reduce heat loss by thermal radiation. In its basic form, it does not appreciably insulate against other thermal losses such as heat conduction or convection. It is therefore commonly used on satellites and other applications in vacuum where conduction and convection are much less significant and radiation dominates. MLI gives many satellites and other space probes the appearance of being covered with gold foil which is the effect of the amber-coloured Kapton layer deposited over the silver Aluminized mylar.

<span class="mw-page-title-main">Pirani gauge</span>

The Pirani gauge is a robust thermal conductivity gauge used for the measurement of the pressures in vacuum systems. It was invented in 1906 by Marcello Pirani.

<span class="mw-page-title-main">Heat flux sensor</span> Sensor which measures heat transfer

A heat flux sensor is a transducer that generates an electrical signal proportional to the total heat rate applied to the surface of the sensor. The measured heat rate is divided by the surface area of the sensor to determine the heat flux.

Clothing insulation is the thermal insulation provided by clothing.

<span class="mw-page-title-main">Radiant heating and cooling</span> Category of HVAC technologies

Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", "embedded surface systems", "thermally active building systems", and infrared heaters. According to some definitions, a technology is only included in this category if radiation comprises more than 50% of its heat exchange with the environment; therefore technologies such as radiators and chilled beams are usually not considered radiant heating or cooling. Within this category, it is practical to distinguish between high temperature radiant heating, and radiant heating or cooling with more moderate source temperatures. This article mainly addresses radiant heating and cooling with moderate source temperatures, used to heat or cool indoor environments. Moderate temperature radiant heating and cooling is usually composed of relatively large surfaces that are internally heated or cooled using hydronic or electrical sources. For high temperature indoor or outdoor radiant heating, see: Infrared heater. For snow melt applications see: Snowmelt system.

ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy is an American National Standard published by ASHRAE that establishes the ranges of indoor environmental conditions to achieve acceptable thermal comfort for occupants of buildings. It was first published in 1966, and since 2004 has been updated every three to six years. The most recent version of the standard was published in 2020.

<span class="mw-page-title-main">Clothing physiology</span> Study of clothings interaction with the human body

Clothing physiology is a branch of science that studies the interaction between clothing and the human body, with a particular focus on how clothing affects the physiological and psychological responses of individuals to different environmental conditions. The goal of clothing physiology research is to develop a better understanding of how clothing can be designed to optimize comfort, performance, and protection for individuals in various settings, including outdoor recreation, occupational environments, and medical contexts.

References

  1. Gagge, Adolph Pharo; Burton, Alan Chadburn; Bazett, Henry Cuthbert (1941). "A practical system of units for the description of the heat exchange of man with his environment". Science. 94 (2445): 428–430. Bibcode:1941Sci....94..428G. doi:10.1126/science.94.2445.428. PMID   17758307.
  2. 1 2 Holmér, Ingvar (2004). "Thermal manikin history and applications". European Journal of Applied Physiology. 92 (6): 614–618. doi:10.1007/s00421-004-1135-0. PMID   15185083. S2CID   22961337.
  3. Li, Yi; Newton, Edward; Luo, Xiaonan; Luo, Zhongxuan (2000). "Integrated CAD for functional textiles and apparel". Proceedings of Nokobotef 6 and 1st European Conference on Protective Clothing. 8: 8–11.
  4. Fiala, Dusan; Lomas, Kevin; Stohrer, Martin (October 2001). "Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions". International Journal of Biometeorology. 45 (3): 143–59. Bibcode:2001IJBm...45..143F. doi:10.1007/s004840100099. PMID   11594634. S2CID   24476680.
  5. Nilsson, Håkan (December 2007). "Thermal comfort evaluation with virtual manikin methods". Building and Environment. 42 (12): 4000–40005. doi:10.1016/j.buildenv.2006.04.027.
  6. Tanabe, S.; Arens, E.A.; Bauman, F.S.; Zhang, H.; Madsen, T.L. (1994). "Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature". ASHRAE Transactions. 100 (1): 39–48.
  7. 1 2 Melikov, Arsen (2004). "Breathing thermal manikins for indoor environment assessment: important characteristics and requirements". European Journal of Applied Physiology. 92 (6): 710–713. doi:10.1007/s00421-004-1142-1. PMID   15168126. S2CID   24765076.
  8. Thermal manikin calibration (PDF). Retrieved November 19, 2013.