Thermal simulations for integrated circuits

Last updated

Miniaturizing components has always been a primary goal in the semiconductor industry because it cuts production cost and lets companies build smaller computers and other devices. Miniaturization, however, has increased dissipated power per unit area and made it a key limiting factor in integrated circuit performance. Temperature increase becomes relevant for relatively small-cross-sections wires, where it may affect normal semiconductor behavior. Besides, since the generation of heat is proportional to the frequency of operation for switching circuits, fast computers have larger heat generation than slow ones, an undesired effect for chips manufacturers. This article summaries physical concepts that describe the generation and conduction of heat in an integrated circuit, and presents numerical methods that model heat transfer from a macroscopic point of view.

Contents

Generation and transfer of heat

Fourier's law

At macroscopic level, Fourier's law states a relation between the transmitted heat per unit time per unit area and the gradient of temperature:

Where is the thermal conductivity, [W·m−1 K−1].

Joule heating

Electronic systems work based on current and voltage signals. Current is the flow of charged particles through the material and these particles (electrons or holes), interact with the lattice of the crystal losing its energy which is released in form of heat. Joule Heating is a predominant mechanism for heat generation in integrated circuits [1] and is an undesired effect in most of the cases. For an ohmic material, it has the form:

Where is the current density in [A·m−2], is the specific electric resistivity in [·m] and is the generated heat per unit volume in [W·m−3]. [1]

Heat-transfer equation

The governing equation of the physics of the heat transfer problem relates the flux of heat in space, its variation in time and the generation of power by the following expression:

Where is the thermal conductivity, is the density of the medium, is the specific heat, , the thermal diffusivity and is the rate of heat generation per unit volume. Heat diffuses from the source following the above equation and solution in an homogeneous medium follows a Gaussian distribution.

Techniques to solve heat equation

Kirchhoff transformation

To get rid of the temperature dependence of , Kirchhoff transformation can be performed [2]

where and is the heat sink temperature. When applying this transformation, the heat equation becomes:

where is called the diffusivity, [2] which also depends on the temperature. To completely linearize the equation, a second transformation is employed:

yielding the expression:

Simple, direct application of this equation requires approximation. Additional terms arising in the transformed Laplacian are dropped, leaving the Laplacian in its conventional form. [2]

Analytical solutions

Although analytical solutions can only be found for specific and simple cases, they give a good insight to deal with more complex situations. Analytical solutions for regular subsystems can also be combined to provide detailed descriptions of complex structures. In Prof. Batty's work, [2] a Fourier series expansion to the temperature in the Laplace domain is introduced to find the solution to the linearized heat equation.

Example

This procedure can be applied to a simple but nontrivial case: an homogeneous cube die made out of GaAs, L=300 um. The goal is to find the temperature distribution on the top surface. The top surface is discretized into smaller squares with index i=1...N. One of them is considered to be the source.

Taking the Laplace transform to the heat equation:

where

Function is expanded in terms of cosine functions for the and variables and in terms of hyperbolic cosines and sines for variable. Next, by applying adiabatic boundary conditions at the lateral walls and fix temperature at the bottom (heat sink temperature), thermal impedance matrix equation is derived:

Where the index accounts for the power sources, while the index refers to each small area.

For more details about the derivation, please see Prof. Batty's paper,. [2] The below figure shows the steady state temperature distribution of this analytical method for a cubic die, with dimensions 300 um. A constant power source of 0.3W is applied over a central surface of dimension 0.1L x 0.1L. As expected, the distribution decays as it approaches to the boundaries, its maximum is located at the center and almost reaches 400K

Battysup.png

Numerical solutions

Numerical solutions use a mesh of the structure to perform the simulation. The most popular methods are: Finite difference time-domain (FDTD) method, Finite element method (FEM) and method of moments (MoM).

The finite-difference time-domain (FDTD) method is a robust and popular technique that consists in solving differential equations numerically as well as certain boundary conditions defined by the problem. This is done by discretizing the space and time, and using finite differencing formulas, thus the partial differential equations that describe the physics of the problem can be solved numerically by computer programs.

The FEM is also a numerical scheme employed to solve engineering and mathematical problems described by differential equations as well as boundary conditions. It discretizes the space into smaller elements for which basis functions are assigned to their nodes or edges. Basis functions are linear or higher order polynomials. Applying the differential equation and the boundary conditions of the problem to the basis functions, a system of equations is formulated using either the Ritz or Galerkin method. Finally, a direct or iterative method is employed to solve the system of linear equations. [3] For the thermal case, FEM method is more suitable due to the nonlinearity nature of the thermal properties.

Example

The previous example can be solved with a numerical method. For this case, the cube can by discretized into rectangular elements. Its basis functions can be chosen to be a first order approximation (linear):

where . If , then .

Using this basis functions and after applying Galerkin's method to the heat transfer equation, a matrix equation is obtained:

where,

.

This expressions can be evaluated by using a simple FEM code. For more details, please see. [3] The figure below shows the temperature distribution for the numerical solution case. This solution shows very good agreement with the analytical case, its peak also reaches 390 K at the center. The apparent lack of smoothness of the distribution comes from the first order approximation of the basis functions and this can be solved by using higher order basis functions. Also, better results might be obtained by employing a denser mesh of the structure; however, for very dense meshes the computation time increases a lot, making the simulation non-practical.

The next figure shows a comparison of the peak temperature as a function of time for both methods. The system reaches steady state in approximately .

Analithic&FEM1.PNG

Model order reduction

The numerical methods such as FEM or FDM derive a matrix equation as shown in the previous section. To solve this equation faster, a method called Model order reduction can be employed to find an approximation of lower order. This method is based on the fact that a high-dimensional state vector belongs to a low-dimensional subspace .

Figure below shows the concept of the MOR approximation: finding matrix V, the dimension of the system can be reduced to solve a simplified system.

DiagramMOR2.png

Therefore, the original system of equation:

becomes:

Whose order is much lower than the original making the computation much less expensive. Once the solution is obtained, the original vector is found by taking the product with V.

Conclusion

The generation of heat is mainly produced by joule heating, this undesired effect has limited the performance of integrated circuits. In the preset article heat conduction was described and analytical and numerical methods to solve a heat transfer problem were presented. Using these methods, steady state temperature distribution was computed as well as the peak temperature as a function of time for a cubic die. For an input power of (or ) applied over a single surface source on the top of a cubic die a peak increment of temperature in the order of 100 K was computed. Such increase in temperature can affect the behavior of surrounding semiconductor devices. Important parameters like mobility change drastically. That is why the heat dissipation is a relevant issue and must be considered for circuit designing.

See also

Related Research Articles

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Kinetic theory of gases</span> Understanding of gas properties in terms of molecular motion

The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. It treats a gas as composed of numerous particles, too small to see with a microscope, which are constantly in random motion. Their collisions with each other and with the walls of their container are used to explain physical properties of the gas—for example, the relationship between its temperature, pressure, and volume. The particles are now known to be the atoms or molecules of the gas.

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:

  1. A continuity equation: Representing the conservation of mass.
  2. Conservation of momentum: Consisting of a form of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere
  3. A thermal energy equation: Relating the overall temperature of the system to heat sources and sinks

In mathematics, the mean curvature of a surface is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation:

In general relativity, optical scalars refer to a set of three scalar functions (expansion), (shear) and (twist/rotation/vorticity) describing the propagation of a geodesic null congruence.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

Frontogenesis is a meteorological process of tightening of horizontal temperature gradients to produce fronts. In the end, two types of fronts form: cold fronts and warm fronts. A cold front is a narrow line where temperature decreases rapidly. A warm front is a narrow line of warmer temperatures and essentially where much of the precipitation occurs. Frontogenesis occurs as a result of a developing baroclinic wave. According to Hoskins & Bretherton, there are eight mechanisms that influence temperature gradients: horizontal deformation, horizontal shearing, vertical deformation, differential vertical motion, latent heat release, surface friction, turbulence and mixing, and radiation. Semigeostrophic frontogenesis theory focuses on the role of horizontal deformation and shear.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

Relativistic heat conduction refers to the modelling of heat conduction in a way compatible with special relativity. In special relativity, the usual heat equation for non-relativistic heat conduction must be modified, as it leads to faster-than-light signal propagation. Relativistic heat conduction, therefore, encompasses a set of models for heat propagation in continuous media that are consistent with relativistic causality, namely the principle that an effect must be within the light-cone associated to its cause. Any reasonable relativistic model for heat conduction must also be stable, in the sense that differences in temperature propagate both slower than light and are damped over time.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved.

A non-expanding horizon (NEH) is an enclosed null surface whose intrinsic structure is preserved. An NEH is the geometric prototype of an isolated horizon which describes a black hole in equilibrium with its exterior from the quasilocal perspective. It is based on the concept and geometry of NEHs that the two quasilocal definitions of black holes, weakly isolated horizons and isolated horizons, are developed.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.

References

  1. 1 2 T. Bechtold, E. V. Rudnyi and J. G Korvink, "Dynamic electro-thermal simulation of microsystems—a review," Journal of Micromechanics and Microengineering. vol. 15, pp. R17–R31, 2005
  2. 1 2 3 4 5 W. Batty, C. E. Christoffersen, A. J. Panks, S. David, C. M. Snowden, M. B. Steer, “Electrothermal CAD of Power Devices and Circuits With Fully Physical Time- Dependent Compact Thermal Modeling of Complex Nonlinear 3-d Systems,” IEEE Trans. Comp. and Pack. Technologies, vol. 24, no. 4, pp. 566–590, 2001.
  3. 1 2 J.-M. Jin, The Finite Element Method in Electromagnetics. New York: Wiley, 2nd ed., 2002