Thermo-mechanical fatigue (short TMF) is the overlay of a cyclical mechanical loading, that leads to fatigue of a material, with a cyclical thermal loading. Thermo-mechanical fatigue is an important point that needs to be considered, when constructing turbine engines or gas turbines.
There are three mechanisms acting in thermo-mechanical fatigue
Each factor has more or less of an effect depending on the parameters of loading. In phase (IP) thermo-mechanical loading (when the temperature and load increase at the same time) is dominated by creep. The combination of high temperature and high stress is the ideal condition for creep. The heated material flows more easily in tension, but cools and stiffens under compression. Out of phase (OP) thermo-mechanical loading is dominated by the effects of oxidation and fatigue. Oxidation weakens the surface of the material, creating flaws and seeds for crack propagation. As the crack propagates, the newly exposed crack surface then oxidizes, weakening the material further and enabling the crack to extend. A third case occurs in OP TMF loading when the stress difference is much greater than the temperature difference. Fatigue alone is the driving cause of failure in this case, causing the material to fail before oxidation can have much of an effect. [1]
TMF still is not fully understood. There are many different models to attempt to predict the behavior and life of materials undergoing TMF loading. The two models presented below take different approaches.
There are many different models that have been developed in an attempt to understand and explain TMF. This page will address the two broadest approaches, constitutive and phenomenological models. Constitutive models utilize the current understanding of the microstructure of materials and failure mechanisms. These models tend to be more complex, as they try to incorporate everything we know about how the materials fail. These types of models are becoming more popular recently as improved imaging technology has allowed for a better understanding of failure mechanisms. Phenomenological models are based purely on the observed behavior of materials. They treat the exact mechanism of failure as a sort of "black box". Temperature and loading conditions are input, and the result is the fatigue life. These models try to fit some equation to match the trends found between different inputs and outputs.
The damage accumulation model is a constitutive model of TMF. It adds together the damage from the three failure mechanisms of fatigue, creep, and oxidation.
where is the fatigue life of the material, that is, the number of loading cycles until failure. The fatigue life for each failure mechanism is calculated individually and combined to find the total fatigue life of the specimen. [2] [3]
The life from fatigue is calculated for isothermal loading conditions. It is dominated by the strain applied to the specimen.
where and are material constants found through isothermal testing. Note that this term does not account for temperature effects. The effects of temperature are treated in the oxidation and creep terms..
The life from oxidation is affected by temperature and cycle time.
where
and
Parameters are found by comparing fatigue tests done in air and in an environment with no oxygen (vacuum or argon). Under these testing conditions, it has been found that the effects of oxidation can reduce the fatigue life of a specimen by a whole order of magnitude. Higher temperatures greatly increase the amount of damage from environmental factors. [4]
where
The damage accumulation model is one of the most in-depth and accurate models for TMF. It accounts for the effects of each failure mechanism.
The damage accumulation model is also one of the most complex models for TMF. There are several material parameters that must be found through extensive testing. [5]
Strain-rate partitioning is a phenomenological model of thermo-mechanical fatigue. It is based on observed phenomenon instead of the failure mechanisms. This model deals only with inelastic strain and ignores elastic strain completely. It accounts for different types of deformation and breaks strain into four possible scenarios: [6]
The damage and life for each partition is calculated and combined in the model
where
and etc., are found from variations of the equation
where A and C are material constants for individual loading.
Strain-Rate Partitioning is a much simpler model than the damage accumulation model. Because it breaks down the loading into specific scenarios, it can account for different phases in loading.
The model is based on inelastic strain. This means that it does not work well with scenarios of low inelastic strain, such as brittle materials or loading with very low strain. This model can be an oversimplification. Because it fails to account for oxidation damage, it may overpredict specimen life in certain loading conditions.
The next area of research is attempting to understand TMF of composites. The interaction between the different materials adds another layer of complexity. Zhang and Wang are currently investigating the TMF of a unidirectional fiber reinforced matrix. They are using a finite element method that accounts for the known microstructure. They have discovered that the large difference in the thermal expansion coefficient between the matrix and the fiber is the driving cause of failure, causing high internal stress. [7]
In engineering, deformation may be elastic or plastic. If the deformation is negligible, the object is said to be rigid.
In materials science and solid mechanics, Poisson's ratioν (nu) is a measure of the Poisson effect, the deformation of a material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain. For small values of these changes, ν is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression. Many typical solids have Poisson's ratios in the range of 0.2 to 0.3. The ratio is named after the French mathematician and physicist Siméon Poisson.
Dynamic mechanical analysis is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature of the material, as well as to identify transitions corresponding to other molecular motions.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.
In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.
The work of a force on a particle along a virtual displacement is known as the virtual work.
Coble creep, a form of diffusion creep, is a mechanism for deformation of crystalline solids. Contrasted with other diffusional creep mechanisms, Coble creep is similar to Nabarro–Herring creep in that it is dominant at lower stress levels and higher temperatures than creep mechanisms utilizing dislocation glide. Coble creep occurs through the diffusion of atoms in a material along grain boundaries. This mechanism is observed in polycrystals or along the surface in a single crystal, which produces a net flow of material and a sliding of the grain boundaries.
Damage mechanics is concerned with the representation, or modeling, of damage of materials that is suitable for making engineering predictions about the initiation, propagation, and fracture of materials without resorting to a microscopic description that would be too complex for practical engineering analysis.
The Larson–Miller relation, also widely known as the Larson–Miller parameter and often abbreviated LMP, is a parametric relation used to extrapolate experimental data on creep and rupture life of engineering materials.
Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.
Dislocation creep is a deformation mechanism in crystalline materials. Dislocation creep involves the movement of dislocations through the crystal lattice of the material, in contrast to diffusion creep, in which diffusion is the dominant creep mechanism. It causes plastic deformation of the individual crystals, and thus the material itself.
In solid mechanics, the Johnson–Holmquist damage model is used to model the mechanical behavior of damaged brittle materials, such as ceramics, rocks, and concrete, over a range of strain rates. Such materials usually have high compressive strength but low tensile strength and tend to exhibit progressive damage under load due to the growth of microfractures.
Creep and shrinkage of concrete are two physical properties of concrete. The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) in the hardened Portland cement paste, is fundamentally different from the creep of metals and polymers. Unlike the creep of metals, it occurs at all stress levels and, within the service stress range, is linearly dependent on the stress if the pore water content is constant. Unlike the creep of polymers and metals, it exhibits multi-months aging, caused by chemical hardening due to hydration which stiffens the microstructure, and multi-year aging, caused by long-term relaxation of self-equilibrated micro-stresses in the nano-porous microstructure of the C-S-H. If concrete is fully dried, it does not creep, but it is next to impossible to dry concrete fully without severe cracking.
Plasticity theory for rocks is concerned with the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture while plasticity is identified with ductile materials. In field scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last word.
Nabarro–Herring creep is a mode of deformation of crystalline materials that occurs at low stresses and held at elevated temperatures in fine-grained materials. In Nabarro–Herring creep, atoms diffuse through the crystals, and the creep rate varies inversely with the square of the grain size so fine-grained materials creep faster than coarser-grained ones. NH creep is solely controlled by diffusional mass transport. This type of creep results from the diffusion of vacancies from regions of high chemical potential at grain boundaries subjected to normal tensile stresses to regions of lower chemical potential where the average tensile stresses across the grain boundaries are zero. Self-diffusion within the grains of a polycrystalline solid can cause the solid to yield to an applied shearing stress, the yielding being caused by a diffusional flow of matter within each crystal grain away from boundaries where there is a normal pressure and toward those where there is a normal tension. Atoms migrating in the opposite direction account for the creep strain. The creep strain rate is derived in the next section. NH creep is more important in ceramics than metals as dislocation motion is more difficult to effect in ceramics.
Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.
Solder fatigue is the mechanical degradation of solder due to deformation under cyclic loading. This can often occur at stress levels below the yield stress of solder as a result of repeated temperature fluctuations, mechanical vibrations, or mechanical loads. Techniques to evaluate solder fatigue behavior include finite element analysis and semi-analytical closed-form equations.
A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks. In critical structure, loads can be recorded and used to predict the size of cracks to ensure maintenance or retirement occurs prior to any of the cracks failing. Safety factors are used to reduce the predicted fatigue life to a service fatigue life because of the sensitivity of the fatigue life to the size and shape of crack initiating defects and the variability between assumed loading and actual loading experienced by a component.
Anelasticity is a property of materials that describes their behaviour when undergoing deformation. Its formal definition does not include the physical or atomistic mechanisms but still interprets the anelastic behaviour as a manifestation of internal relaxation processes. It is a behaviour differing from elastic behaviour.