Thin filament pyrometry

Last updated
TFP image in diluted methane flame. Filament spacing is about 10 mm. Thin-filament-pyrometry-image.jpg
TFP image in diluted methane flame. Filament spacing is about 10 mm.

Thin filament pyrometry (TFP) is an optical method used to measure temperatures. It involves the placement of a thin filament in a hot gas stream. Radiative emissions from the filament can be correlated with filament temperature. Filaments are typically silicon carbide (SiC) fibers with a diameter of 15 micrometres. Temperatures of about 800–2500 K can be measured.

Contents

History

TFP in flames was first used by Vilimpoc et al. (1988). [1] More recently, this was demonstrated by Pitts (1996), [2] Blevins et al. (1999), [3] and Maun et al. (2007). [4]

Technique

The typical TFP apparatus consists of a flame or other hot gas stream, a filament, and a camera.

Advantages

TFP has several advantages, including the ability to simultaneously measure temperatures along a line and minimal intrusiveness. Most other forms of pyrometry are not capable of providing gas-phase temperatures.

Drawbacks

Calibration is required. Calibration typically is performed with a thermocouple. Both thermocouples and filaments require corrections in estimating gas temperatures from probe temperatures. Also, filaments are fragile and typically break after about an hour in a flame.

Applications

The primary application is to combustion and fire research.

See also

Related Research Articles

<span class="mw-page-title-main">Bunsen burner</span> Laboratory device used to make fire from fuel and oxidizer gases

A Bunsen burner, named after Robert Bunsen, is a kind of ambient air gas burner used as laboratory equipment; it produces a single open gas flame, and is used for heating, sterilization, and combustion.

<span class="mw-page-title-main">Chemical vapor deposition</span> Method used to apply surface coatings

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

<span class="mw-page-title-main">Pressure measurement</span> Analysis of force applied by a fluid on a surface

Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

<span class="mw-page-title-main">Thermocouple</span> Electrical device for measuring temperature

A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the Seebeck effect, and this voltage can be interpreted to measure temperature. Thermocouples are widely used as temperature sensors.

<span class="mw-page-title-main">Pyrometer</span> Type of thermometer sensing radiation

A pyrometer or radiation thermometer is a type of remote sensing thermometer used to measure the temperature of distant objects. Various forms of pyrometers have historically existed. In the modern usage, it is a device that from a distance determines the temperature of a surface from the amount of the thermal radiation it emits, a process known as pyrometry, a type of radiometry.

<span class="mw-page-title-main">Flame</span> Visible, gaseous part of a fire

A flame is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density they are then considered plasma.

<span class="mw-page-title-main">Gas chromatography</span> Type of chromatography

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.

Particle image velocimetry (PIV) is an optical method of flow visualization used in education and research. It is used to obtain instantaneous velocity measurements and related properties in fluids. The fluid is seeded with tracer particles which, for sufficiently small particles, are assumed to faithfully follow the flow dynamics. The fluid with entrained particles is illuminated so that particles are visible. The motion of the seeding particles is used to calculate speed and direction of the flow being studied.

Resistance thermometers, also called resistance temperature detectors (RTDs), are sensors used to measure temperature. Many RTD elements consist of a length of fine wire wrapped around a heat-resistant ceramic or glass core but other constructions are also used. The RTD wire is a pure material, typically platinum (Pt), nickel (Ni), or copper (Cu). The material has an accurate resistance/temperature relationship which is used to provide an indication of temperature. As RTD elements are fragile, they are often housed in protective probes.

<span class="mw-page-title-main">Hafnium(IV) oxide</span> Chemical compound

Hafnium(IV) oxide is the inorganic compound with the formula HfO
2
. Also known as hafnium dioxide or hafnia, this colourless solid is one of the most common and stable compounds of hafnium. It is an electrical insulator with a band gap of 5.3~5.7 eV. Hafnium dioxide is an intermediate in some processes that give hafnium metal.

<span class="mw-page-title-main">Electric match</span> Device using electricity to ignite a combustible compound

An electric match is a device that uses an externally applied electric current to ignite a combustible compound.

<span class="mw-page-title-main">Thermal spraying</span> Coating process for applying heated materials to a surface

Thermal spraying techniques are coating processes in which melted materials are sprayed onto a surface. The "feedstock" is heated by electrical or chemical means.

A gas detector is a device that detects the presence of gases in an area, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. This type of device is important because there are many gases that can be harmful to organic life, such as humans or animals.

Photothermal spectroscopy is a group of high sensitivity spectroscopy techniques used to measure optical absorption and thermal characteristics of a sample. The basis of photothermal spectroscopy is the change in thermal state of the sample resulting from the absorption of radiation. Light absorbed and not lost by emission results in heating. The heat raises temperature thereby influencing the thermodynamic properties of the sample or of a suitable material adjacent to it. Measurement of the temperature, pressure, or density changes that occur due to optical absorption are ultimately the basis for the photothermal spectroscopic measurements.

<span class="mw-page-title-main">Heat flux sensor</span> Sensor which measures heat transfer

A heat flux sensor is a transducer that generates an electrical signal proportional to the total heat rate applied to the surface of the sensor. The measured heat rate is divided by the surface area of the sensor to determine the heat flux.

Continuous emission monitoring systems (CEMS) are used as a tool to monitor the effluent gas streams resulting from combustion in industrial processes. CEMS can measure flue gas for oxygen, carbon monoxide and carbon dioxide to provide information for combustion control in industrial settings. They are also used as a means to comply with air emission standards such as the United States Environmental Protection Agency's (EPA) Acid Rain Program, other US federal emission programs, or state permitted emission standards. CEMS typically consist of analyzers to measure gas concentrations within the stream, equipment to direct a sample of that gas stream to the analyzers if they are remote, equipment to condition the sample gas by removing water and other components that could interfere with the reading, pneumatic plumbing with valves that can be controlled by a PLC to route the sample gas to and away from the analyzers, a calibration and maintenance system that allows for the injection of calibration gases into the sample line, and a Data Acquisition and Handling System (DAHS) that collects and stores each data point and can perform necessary calculations required to get total mass emissions. A CEMS operates at all times even if the process it measures is not on. They can continuously collect, record and report emissions data for process monitoring and/or for compliance purposes.

<span class="mw-page-title-main">Scanning thermal microscopy</span>

Scanning thermal microscopy (SThM) is a type of scanning probe microscopy that maps the local temperature and thermal conductivity of an interface. The probe in a scanning thermal microscope is sensitive to local temperatures – providing a nano-scale thermometer. Thermal measurements at the nanometer scale are of both scientific and industrial interest. The technique was invented by Clayton C. Williams and H. Kumar Wickramasinghe in 1986.

Combustion chemical vapor deposition (CCVD) is a chemical process by which thin-film coatings are deposited onto substrates in the open atmosphere.

Incoherent broad band cavity enhanced absorption spectroscopy (IBBCEAS), sometimes called broadband cavity enhanced extinction spectroscopy (IBBCEES), measures the transmission of light intensity through a stable optical cavity consisting of high reflectance mirrors (typically R>99.9%). The technique is realized using incoherent sources of radiation e.g. Xenon arc lamps, LEDs or supercontinuum (SC) lasers, hence the name.

<span class="mw-page-title-main">Low-energy plasma-enhanced chemical vapor deposition</span>

Low-energy plasma-enhanced chemical vapor deposition (LEPECVD) is a plasma-enhanced chemical vapor deposition technique used for the epitaxial deposition of thin semiconductor films. A remote low energy, high density DC argon plasma is employed to efficiently decompose the gas phase precursors while leaving the epitaxial layer undamaged, resulting in high quality epilayers and high deposition rates.

References

  1. Vilimpoc, V.; Goss, L.P.; Sarka, B. (1988). "Spatial temperature-profile measurements by the thin-filament-pyrometry technique". Applied Optics. 13 (2): 93–95. doi:10.1364/OL.13.000093.
  2. Pitts, W.M. (1996). "Thin-filament pyrometry in flickering laminar diffusion flames". Proceedings of the Combustion Institute. 26: 1171–1179.
  3. Bevins, LG.; Refro, M.W.; Lyle, K.H.; Laurendeau, N.M.; Gore, J.P. (1999). "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames". Combustion and Flame. 118: 684–696. doi:10.1016/S0010-2180(99)00023-1.
  4. Maun, J.D.; Sunderland, P.B.; Urban, D.L. (2007). "Thin-filament pyrometry with a digital still camera". Applied Optics. 46 (4): 483–488. doi:10.1364/AO.46.000483. hdl: 1903/3602 .