Thomas H. Heaton

Last updated
Thomas H. Heaton
Nationality Flag of the United States.svg American
Alma materCaltech
Known for Seismology and Earthquake source physics
Scientific career
FieldsSeismology, Earthquake Physics, Engineering
Institutions Caltech
Doctoral advisor Donald Helmberger

Thomas H. (Tom) Heaton is an American seismologist, known for his influential contributions in earthquake source physics and earthquake early warning. Currently he is the professor of geophysics and civil engineering at California Institute of Technology (Caltech) and one of the world's leading experts on seismology.

Contents

Biography

Tom Heaton received his B.S. from Indiana University in 1972, and Doctor of Philosophy from California Institute of Technology in 1978. He wrote his Ph.D. thesis on ray theory and its application to seismology, under the supervision of seismologist Don Helmberger. After graduation, Heaton joined the United States Geological Survey (USGS) in 1979. There he worked as a research geophysicist in their Pasadena office from 1979 until July 1995, at which time he was the USGS project chief of the Southern California Seismic Network. He was the scientist in charge of the USGS Pasadena office from 1985 until October 1992 and he was also the coordinator of the USGS earthquake program in southern California. Heaton returned to Caltech in 1995 where he resumed the post of the professor of geophysics and civil engineering. Heaton is married and has three children.

Research

Heaton's research has principally focused on seismology and earthquake physics, with emphasis on earthquake rupture dynamics, earthquake early warning and strong ground motion. He is perhaps best known in the scientific community for his several contributions in source inversions and specially his influential 1990 paper "Evidence for and Implications of self healing pulses of slip in earthquakes", [1] where he clearly provided evidence for the existence of another mode of rupture for earthquakes; namely the pulse like mode, other than the widely accepted crack like model that was adopted at that time. This paper triggered a new way for earthquake scientists to look at earthquake ruptures.

Strong ground motion

Heaton's work is aimed at a more complete understanding of the nature of ground shaking close to large earthquakes. That is, ground motions from large earthquakes are simulated by propagating waves through 3-dimensional Earth structure models. The models produce realistic estimates of the large displacements (several meters in several seconds) that occur in great earthquakes. While accelerations that are associated with these large displacements may not be large enough to cause failure of strong, shear-wall structures, they may cause severe deformations in flexible buildings that rely heavily on ductility for their performance in large earthquakes. Heaton's group work in that field focuses on investigating the potential performance of steel moment-resisting-frame buildings and base-isolated buildings in large subduction zone earthquakes.

Earthquake rupture physics and crustal stress

Heaton is particularly interested in understanding the origins of spatially heterogeneous slip in earthquakes. There is compelling evidence that slip in earthquakes and stress in the Earth's crust are spatially heterogeneous, and perhaps fractal. Several approaches are being pursued in his group to understand the dynamic properties of this system. One of the approaches is the 3D finite element modeling for regions in the crust with ruptures occurring on fault planes controlled by dynamic friction and looking for conditions that are required to sustain the observed heterogeneous characteristics of stress and slip in cycles of earthquakes. On the other hand, Heaton was among the first to recognize that the heterogeneity in the crust could be modeled by 3D fractal tensors models for stress. With Deborah E. Smith, they generated those fractal stress tensors and used them to produce catalogs of earthquake locations and focal mechanisms. They could explain several field observations with this model. Also the model predicts that the strength of the crust should be a scale dependent property, a topic which is currently being further investigated in Heaton's group.

Earthquake warning systems

Heaton was initially interested in earthquake prediction. However, one of the implications of his now accepted pulse like model for earthquake ruptures is that predicting when an earthquake is going to happen is very difficult if not impossible. This is because it does not require that the background stress on the fault plane to be uniformly high everywhere in order to initiate rupture as pulse like ruptures can propagate in relatively low background stress. [2] Accordingly, stresses need only to be high at isolated locations which may not be accessible to direct observation as those locations are not apriori known. However, the pulse like rupture mode has an inherent merit; it implies that the slip at any point ceases within a short period of time after the passage of the rupture front at this location and long before the whole earthquake stops. Since scaling relations between slip and total rupture length exist, the pulse like model implies that it may be possible to predict, at least in a probabilistic sense, how long the earthquake rupture could be once the slip values at some points are recorded and in the pulse like model we can have information about final slip values shortly after the initiation of rupture. This opens new premises in the field of earthquake early warnings. The virtual seismologist, which is an innovative earthquake early warning technique, is an example of the achievements of Heaton's group in that field.

Publications

Heaton has written on topics in seismology, earthquake physics, earthquake early warning and building vibrations. In 1990 he wrote his influential paper on evidence for and implications of pulse like ruptures in real earthquakes. The view before that time was that earthquakes propagate as shear cracks on fault planes in the Earth's crust. In this crack like models, each point on the fault continues to slip for a substantial part of the total duration of the earthquake. Once the point starts to slip, it will continue to do that until waves are reflected back from the ends of the fault carrying information that the earthquake has already reached its full rupture length. By studying slip inversions of several real earthquakes, Heaton came to the conclusion that the crack like view is not always true. On the contrary, he found that the slip duration at any point on the fault usually does not exceed one tenth of the total earthquake time. This implies that the rupture heals shortly after its initiation at any point and he provided examples of possible physical mechanisms that can result in this early healing. Heaton's view was faced by a huge controversy but it triggered a lot of research to test his model. Numerous analytical, numerical and experimental work have been done in the subsequent years that showed supporting evidence for Heaton's model. Pulse like mode of rupture is now a widely accepted model and it is sometimes even called Heaton Pulses honoring Heaton's contribution in that field.

Honors and awards

Related Research Articles

<span class="mw-page-title-main">Earthquake</span> Sudden movement of the Earths crust

An earthquake – also called a quake, tremor, or temblor – is the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume.

The moment magnitude scale is a measure of an earthquake's magnitude based on its seismic moment. Mw was defined in a 1979 paper by Thomas C. Hanks and Hiroo Kanamori. Similar to the local magnitude/Richter scale (ML ) defined by Charles Francis Richter in 1935, it uses a logarithmic scale; small earthquakes have approximately the same magnitudes on both scales. Despite the difference, news media often use the term "Richter scale" when referring to the moment magnitude scale.

In seismology, a supershear earthquake is when the propagation of the rupture along the fault surface occurs at speeds in excess of the seismic shear wave velocity. This causes an effect analogous to a sonic boom.

<span class="mw-page-title-main">San Jacinto Fault Zone</span> Southern Californian fault zone

The San Jacinto Fault Zone (SJFZ) is a major strike-slip fault zone that runs through San Bernardino, Riverside, San Diego, and Imperial Counties in Southern California. The SJFZ is a component of the larger San Andreas transform system and is considered to be the most seismically active fault zone in the area. Together they relieve the majority of the stress between the Pacific and North American tectonic plates.

The 2007 Alum Rock earthquake occurred on October 30 at 8:04 p.m. Pacific Daylight Time in Alum Rock Park in San Jose, in the U.S. state of California. It measured 5.6 on the moment magnitude scale and had a maximum Mercalli intensity of VI (Strong). The event was then the largest in the San Francisco Bay Area since the 1989 Loma Prieta earthquake, which measured 6.9 on the moment magnitude scale, but was later surpassed by the 2014 South Napa earthquake. Ground shaking from the Alum Rock quake reached San Francisco and Oakland and other points further north. Sixty thousand felt reports existed far beyond Santa Rosa, as far north as Eugene, Oregon.

The 1932 Changma earthquake occurred at 10:04:27 local time on 25 December. With an estimated magnitude of 7.6 on the surface-wave magnitude scale, and a maximum felt intensity of X (Extreme) on the Mercalli intensity scale, the quake destroyed 1,167 houses and caused 275 to 70,000 deaths and 320 injuries.

The 1948 Desert Hot Springs earthquake occurred on December 4 at 3:43 p.m. Pacific Standard Time with a moment magnitude of 6.4 and a maximum Mercalli intensity of VII. The shock was felt from the central coast of California in the north, and to Baja California in the south, and came at a time when earthquake research in southern California resumed following the Second World War. It was one of two events in the 20th century that have occurred near a complex region of the southern San Andreas Fault system where it traverses the San Gorgonio Pass and the northern Coachella Valley. Damage was not severe, but some serious injuries occurred, and aftershocks continued until 1957.

<span class="mw-page-title-main">UCERF2</span>

The 2008 Uniform California Earthquake Rupture Forecast, Version 2, or UCERF2, is one of a series of earthquake forecasts prepared for the state California by the Working Group on California Earthquake Probabilities (WGCEP), collaboration of the United States Geological Survey, the California Geological Survey, and the Southern California Earthquake Center, with funding from the California Earthquake Authority. UCERF2 was superseded by UCERF3 in 2015.

<span class="mw-page-title-main">UCERF3</span> 2015 US Geological Survey earthquake forecast for California

The 2015 Uniform California Earthquake Rupture Forecast, Version 3, or UCERF3, is the latest official earthquake rupture forecast (ERF) for the state of California, superseding UCERF2. It provides authoritative estimates of the likelihood and severity of potentially damaging earthquake ruptures in the long- and near-term. Combining this with ground motion models produces estimates of the severity of ground shaking that can be expected during a given period, and of the threat to the built environment. This information is used to inform engineering design and building codes, planning for disaster, and evaluating whether earthquake insurance premiums are sufficient for the prospective losses. A variety of hazard metrics can be calculated with UCERF3; a typical metric is the likelihood of a magnitude M 6.7 earthquake in the 30 years since 2014.

The 1838 San Andreas earthquake is believed to be a rupture along the northern part of the San Andreas Fault in June 1838. It affected approximately 100 km of the fault, from the San Francisco Peninsula to the Santa Cruz Mountains. It was a strong earthquake, with an estimated moment magnitude of 6.8 to 7.2, making it one of the largest known earthquakes in California. The region was lightly populated at the time, although structural damage was reported in San Francisco, Oakland, and Monterey. It is unknown whether there were fatalities. Based on geological sampling, the fault created approximately 1.5 meters of slip.

Nadia Lapusta is a Professor of Mechanical Engineering and Geophysics at the California Institute of Technology. She designed the first computational model that could accurately and efficiently simulate sequence of earthquakes and interseismic slow deformation on a planar fault in a single consistent physical framework.

Michel Campillo is a French seismologist and geophysicist who is currently a professor at Grenoble Alpes University.

The 1973 Luhuo earthquake struck near the town of Zhaggo in Garzê Tibetan Autonomous Prefecture of Sichuan Province, China on February 6, 1973, with a magnitude of 7.6 Ms. The earthquake had a maximum intensity of X (Extreme) on the Modified Mercalli intensity scale. It resulted in between 2,175 and 2,204 deaths and a further 2,743 injuries. Serious and widespread destruction occurred in Luhuo County.

<span class="mw-page-title-main">2013 Craig, Alaska earthquake</span> Earthquake in Alaska and British Columbia

The 2013 Craig, Alaska earthquake struck on January 5, at 12:58 am (UTC–7) near the city of Craig and Hydaburg, on Prince of Wales Island. The Mw 7.5 earthquake came nearly three months after an Mw  7.8 quake struck Haida Gwaii on October 28, in 2012. The quake prompted a regional tsunami warning to British Columbia and Alaska, but it was later cancelled. Due to the remote location of the quake, there were no reports of casualties or damage.

The 2021 Maduo earthquake, also known as the 5.22 earthquake struck Madoi County in Qinghai Province, China on 22 May at 02:04 local time. The earthquake had a moment magnitude and surface-wave magnitude of 7.4. Highway bridges, roads and walls collapsed as a result of the earthquake. According to an anonymous source, at least 20 people were killed, 300 were injured, and 13 were missing. Officials stated that there were no deaths but 19 people sustained minor injuries. It was the strongest in China since 2008. It was assigned a maximum intensity of X in Machali, Maduo County on the China seismic intensity scale and Modified Mercalli intensity scale. This earthquake was preceded by another unrelated earthquake that occurred 5 hours earlier in Yunnan.

The 1995 Menglian earthquake or 1995 Myanmar–China earthquake occurred on 12 July at 05:46:43 local time in the Myanmar–China border region. The earthquake had an epicenter on the Myanmar side of the border, located in the mountainous region of Shan State. It registered 7.3 on the Chinese surface-wave magnitude scale (Ms ) and 6.8 on the moment magnitude scale (Mw ). With a maximum Mercalli intensity assigned at VIII, it killed 11 people and left another 136 injured. Over 100,000 homes in both countries were destroyed and 42,000 seriously damaged. Some damage to structures were also reported in Chiang Mai and Chiang Rai, Thailand. The low death toll from this earthquake was attributed to an early warning issued prior to it happening. Precursor events including foreshocks and some seismic anomalies led to an evacuation of the area before the mainshock struck. It is thought to be one of the few successfully predicted earthquakes in history.

The 1850 Xichang earthquake rocked Sichuan Province of Qing China on September 12. The earthquake which caused major damage in Xichang county had an estimated moment magnitude of 7.3–7.9 Mw  and a surface wave magnitude of 7.5–7.7 Ms . An estimated 20,650 people died.

The 1923 Renda earthquake occurred on March 24 at 20:40 local time between the counties of Daofu and Luhuo in Sichuan, China. The estimated Ms 7.3 earthquake was assigned a maximum modified Mercalli intensity scale rating of X (Extreme). Severe damage occurred in Sichuan, killing an estimated 4,800 people.

The 1955 Zheduotang earthquake, also known as the Kangding earthquake occurred on April 14 at 09:29:02 local time near the city of Kangding in the Garzê Tibetan Autonomous Prefecture, Sichuan. The earthquake had a moment magnitude of 7.0 and a surface wave magnitude of 7.1 and struck at a depth of 10 km. Severe damage occurred in Kangding with the loss of 70 lives.

The 1979 Yapen earthquake occurred on September 12 at 05:17:51 UTC. It had an epicenter near the coast of Yapen Island in Irian Jaya, Indonesia. Measuring 7.5 on the moment magnitude scale and having a depth of 20 km (12 mi), it caused severe damage on the island. At least 115 were killed due to shaking and a moderate tsunami.

References

  1. Heaton, Thomas H. (1990), "Evidence for and implications of self-healing pulses of slip in earthquake rupture", Physics of the Earth and Planetary Interiors, 64 (1), Elsevier: 1–20, Bibcode:1990PEPI...64....1H, doi:10.1016/0031-9201(90)90002-F
  2. Zheng, G.; Rice, J. R. (1998), "Conditions under which velocity-weakening friction allows a self-healing versus a crack like mode of rupture", Bulletin of the Seismological Society of America, 88 (6), Seismological Society of America: 1466–1483, doi:10.1785/BSSA0880061466