It is proposed that this article be deleted because of the following concern:
If you can address this concern by improving, copyediting, sourcing, renaming, or merging the page, please edit this page and do so. You may remove this message if you improve the article or otherwise object to deletion for any reason. Although not required, you are encouraged to explain why you object to the deletion, either in your edit summary or on the talk page. If this template is removed, do not replace it . The article may be deleted if this message remains in place for seven days, i.e., after 23:58, 29 April 2020 (UTC). Find sources: "Ticalium" – news · newspapers · books · scholar · JSTOR |
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages) (Learn how and when to remove this template message)
|
Ticalium is a super hard but lightweight aluminium and titanium carbide metal matrix composite designed to increase the strength, hardness and wear-resistance of aluminum. A patent was applied for by Adal Group Inc in September 2005, following four years of publicly funded research. [1] Ticalium was named by the son of one of the two major shareholders in Adal Group Inc.
The structure of ticalium gives it excellent wear properties. The cutting and wear resistance of ticalium can be increased by more than 50% at a significantly low reinforcement level.
The typical properties of ticalium composite material from 6xxx aluminium alloy is a hardness of 120 HV, a yield strength of 300 MPa, a tensile strength of 330 MPa and a stiffness of 85 GPa. These values are about 25% higher than those for the base alloy.
Dr Cem Selcuk, project manager for Adal, said in their September 19, 2005 news release, "Just for comparison with another strong material, white cast iron has a tensile strength of approximately 250 MPa (Mega Pascals)[sic] and is also brittle, whereas ticalium has a higher strength of about 330 MPa together with a greater stiffness while exhibiting greater lightness according to third party testing."
Billets can be cast and then extruded to produce rods, tubes and complex profiles. Products extruded from ticalium can be engineered, sprayed, anodized, welded, painted and finished using existing practices.
A metal matrix composite (MMC) is composite material with at least two constituent parts, one being a metal necessarily, the other material may be a different metal or another material, such as a ceramic or organic compound. When at least three materials are present, it is called a hybrid composite. An MMC is complementary to a cermet.
A bicycle frame is the main component of a bicycle, onto which wheels and other components are fitted. The modern and most common frame design for an upright bicycle is based on the safety bicycle, and consists of two triangles: a main triangle and a paired rear triangle. This is known as the diamond frame. Frames are required to be strong, stiff and light, which they do by combining different materials and shapes.
A cermet is a composite material composed of ceramic (cer) and metal (met) materials.
Maraging steels are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel. Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates. Original development was carried out on 20 and 25 wt% Ni steels to which small additions of aluminium, titanium, and niobium were made; a rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.
Titanium alloys are alloys that contain a mixture of titanium and other chemical elements. Such alloys have very high tensile strength and toughness. They are light in weight, have extraordinary corrosion resistance and the ability to withstand extreme temperatures. However, the high cost of both raw materials and processing limit their use to military applications, aircraft, spacecraft, bicycles, medical devices, jewelry, highly stressed components such as connecting rods on expensive sports cars and some premium sports equipment and consumer electronics.
Gray iron, or grey cast iron, is a type of cast iron that has a graphitic microstructure. It is named after the gray color of the fracture it forms, which is due to the presence of graphite. It is the most common cast iron and the most widely used cast material based on weight.
Reynolds Technology is a manufacturer of tubing for bicycle frames and other bicycle components based in Birmingham, England established in 1898.
Magnesium alloys are mixtures of magnesium with other metals, often aluminum, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminium, copper and steel; therefore, magnesium alloys are typically used as cast alloys, but research of wrought alloys has been more extensive since 2003. Cast magnesium alloys are used for many components of modern automobiles and have been used in some high-performance vehicles; die-cast magnesium is also used for camera bodies and components in lenses.
Aluminum carbide, chemical formula Al4C3, is a carbide of aluminum. It has the appearance of pale yellow to brown crystals. It is stable up to 1400 °C. It decomposes in water with the production of methane.
Aluminium alloys are alloys in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4.0–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.
6061 is a precipitation-hardened aluminum alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminum for general-purpose use.
7075 aluminium alloy (AA7075) is an aluminium alloy, with zinc as the primary alloying element. It has excellent mechanical properties, and exhibits good ductility, high strength, toughness and good resistance to fatigue. It is more susceptible to embrittlement than many other aluminium alloys because of microsegregation, but has significantly better corrosion resistance than the 2000 alloys. It is one of the most commonly used aluminium alloy for highly stressed structural applications, and has been extensively utilized in aircraft structural parts.
2024 aluminium alloy is an aluminium alloy, with copper as the primary alloying element. It is used in applications requiring high strength to weight ratio, as well as good fatigue resistance. It is weldable only through friction welding, and has average machinability. Due to poor corrosion resistance, it is often clad with aluminium or Al-1Zn for protection, although this may reduce the fatigue strength. In older systems of terminology, 2XXX series alloys were known as duralumin, and this alloy was named 24ST.Al
5086 is an aluminium alloy, primarily alloyed with magnesium. It is not strengthened by heat treatment, instead becoming stronger due to strain hardening, or cold mechanical working of the material.
AA 6063 is an aluminium alloy, with magnesium and silicon as the alloying elements. The standard controlling its composition is maintained by The Aluminum Association. It has generally good mechanical properties and is heat treatable and weldable. It is similar to the British aluminium alloy HE9.
Pradeep K. Rohatgi is a professor of materials engineering, and Director of the Center for Composites at the University of Wisconsin–Milwaukee. He is a world leader in the field of composite materials, particularly metal matrix composites. He currently serves as a Wisconsin and University of Wisconsin-Milwaukee's Distinguished Professor and the Director of the College of engineering and applied science UWM. He has served on committees of the governments of the United States and India in the areas of materials in the automotive, energy, and environmental sectors. His research has been supported by that National Science Foundation, U.S. Department of Energy, Office of Naval Research and automative commands, several major corporations including G.M.Ford,GE,Rockwell,EPRI, Sunstrand, A.O. Smith. Dr. Rohatgi has coauthored eleven books and over 370 referred scientific papers. Material Science and engineering and 70 papers in technology forecasting and research management. He has 20 U.S. patents; 16969 citations and H-Index 67 as of April 9, 2020 and has received numerous awards for excellence in research.
Carbon fiber reinforced polymer, Carbon fibre reinforced polymer, or carbon fiber reinforced plastic, or carbon fiber reinforced thermoplastic, is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The spelling 'fibre' is usual outside the USA. CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructure of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.
7005 is an aluminium alloy used bicycle frames, due to its relative ease of welding it does not require expensive heat treating - it is however harder to form making manufacture more challenging.
2014 aluminium alloy (aluminum) is an aluminium-based alloy often used in the aerospace industry.
7068 aluminium alloy is one of the strongest commercially available aluminium alloys, with a tensile strength comparable to that of some steels. 7068-T6511 has typical ultimate tensile strength of 710 MPa (103 ksi) versus a similar product produced from 7075-T6511 that would have a typical ultimate tensile strength of 640 MPa (93 ksi). Typical yield strength for alloy 7068-T6511 is 683 MPa (99.1 ksi) versus 590 MPa (86 ksi) for a similar product produced from 7075-T6511. Strength allowables for this alloy are provided in Metallic Materials Properties Development and Standardization for design.