In model checking, a field of computer science, timed propositional temporal logic (TPTL) is an extension of propositional linear temporal logic (LTL) in which variables are introduced to measure times between two events. For example, while LTL allows to state that each event p is eventually followed by an event q, TPTL furthermore allows to give a time limit for q to occur.
The future fragment of TPTL is defined similarly to linear temporal logic, in which furthermore, clock variables can be introduced and compared to constants. Formally, given a set of clocks, MTL is built up from:
Furthermore, for an interval, is considered as an abbreviation for ; and similarly for every other kind of intervals.
The logic TPTL+Past [1] is built as the future fragment of TLS and also contains
Note that the next operator N is not considered to be a part of MTL syntax. It will instead be defined from other operators.
A closed formula is a formula over an empty set of clocks. [2]
Let , which intuitively represents a set of times. Let a function that associates to each moment a set of propositions from AP. A model of a TPTL formula is such a function . Usually, is either a timed word or a signal. In those cases, is either a discrete subset or an interval containing 0.
Let and be as above. Let be a set of clocks. Let (a clock valuation over ).
We are now going to explain what it means for a TPTL formula to hold at time for a valuation . This is denoted by . Let and be two formulas over the set of clocks , a formula over the set of clocks , , , a number and being a comparison operator such as <, ≤, =, ≥ or >: We first consider formulas whose main operator also belongs to LTL:
Metric temporal logic is another extension of LTL that allows measurement of time. Instead of adding variables, it adds an infinity of operators and for an interval of non-negative number. The semantics of the formula at some time is essentially the same than the semantics of the formula , with the constraints that the time at which must hold occurs in the interval .
TPTL is as least as expressive as MTL. Indeed, the MTL formula is equivalent to the TPTL formula where is a new variable. [2]
It follows that any other operator introduced in the page MTL, such as and can also be defined as TPTL formulas.
TPTL is strictly more expressive than MTL [1] : 2 both over timed words and over signals. Over timed words, no MTL formula is equivalent to . Over signal, there are no MTL formula equivalent to , which states that the last atomic proposition before time point 1 is an .
A standard (untimed) infinite word is a function from to . We can consider such a word using the set of time , and the function . In this case, for an arbitrary LTL formula, if and only if , where is considered as a TPTL formula with non-strict operator, and is the only function defined on the empty set.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1⁄2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.
Computation tree logic (CTL) is a branching-time logic, meaning that its model of time is a tree-like structure in which the future is not determined; there are different paths in the future, any one of which might be an actual path that is realized. It is used in formal verification of software or hardware artifacts, typically by software applications known as model checkers, which determine if a given artifact possesses safety or liveness properties. For example, CTL can specify that when some initial condition is satisfied, then all possible executions of a program avoid some undesirable condition. In this example, the safety property could be verified by a model checker that explores all possible transitions out of program states satisfying the initial condition and ensures that all such executions satisfy the property. Computation tree logic belongs to a class of temporal logics that includes linear temporal logic (LTL). Although there are properties expressible only in CTL and properties expressible only in LTL, all properties expressible in either logic can also be expressed in CTL*.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.
In physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity.
In theoretical computer science, the modal μ-calculus is an extension of propositional modal logic by adding the least fixed point operator μ and the greatest fixed point operator ν, thus a fixed-point logic.
In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781.
The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.
In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.
In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.
In statistical thermodynamics, the UNIFAC method is a semi-empirical system for the prediction of non-electrolyte activity in non-ideal mixtures. UNIFAC uses the functional groups present on the molecules that make up the liquid mixture to calculate activity coefficients. By using interactions for each of the functional groups present on the molecules, as well as some binary interaction coefficients, the activity of each of the solutions can be calculated. This information can be used to obtain information on liquid equilibria, which is useful in many thermodynamic calculations, such as chemical reactor design, and distillation calculations.
Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.
Metric temporal logic (MTL) is a special case of temporal logic. It is an extension of temporal logic in which temporal operators are replaced by time-constrained versions like until, next, since and previous operators. It is a linear-time logic that assumes both the interleaving and fictitious-clock abstractions. It is defined over a point-based weakly-monotonic integer-time semantics.
In model checking, the Metric Interval Temporal Logic (MITL) is a fragment of Metric Temporal Logic (MTL). This fragment is often preferred to MTL because some problems that are undecidable for MTL become decidable for MITL.
In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.
In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.
In statistics, the matrix F distribution is a matrix variate generalization of the F distribution which is defined on real-valued positive-definite matrices. In Bayesian statistics it can be used as the semi conjugate prior for the covariance matrix or precision matrix of multivariate normal distributions, and related distributions.
{{cite book}}
: |journal=
ignored (help)