Tits metric

Last updated

In mathematics, the Tits metric is a metric defined on the ideal boundary of an Hadamard space (also called a complete CAT(0) space). It is named after Jacques Tits.

Contents

Ideal boundary of an Hadamard space

Let (X, d) be an Hadamard space. Two geodesic rays c1, c2 : [0, ∞] → X are called asymptotic if they stay within a certain distance when traveling, i.e.

Equivalently, the Hausdorff distance between the two rays is finite.

The asymptotic property defines an equivalence relation on the set of geodesic rays, and the set of equivalence classes is called the ideal boundary ∂X of X. An equivalence class of geodesic rays is called a boundary point of X. For any equivalence class of rays and any point p in X, there is a unique ray in the class that issues from p.

Definition of the Tits metric

First we define an angle between boundary points with respect to a point p in X. For any two boundary points in ∂X, take the two geodesic rays c1, c2 issuing from p corresponding to the two boundary points respectively. One can define an angle of the two rays at p called the Alexandrov angle. Intuitively, take the triangle with vertices p, c1(t), c2(t) for a small t, and construct a triangle in the flat plane with the same side lengths as this triangle. Consider the angle at the vertex of the flat triangle corresponding to p. The limit of this angle when t goes to zero is defined as the Alexandrov angle of the two rays at p. (By definition of a CAT(0) space, the angle monotonically decreases as t decreases, so the limit exists.) Now we define to be this angle.

To define the angular metric on the boundary ∂X that does not depend on the choice of p, we take the supremum over all points in X

The Tits metric dT is the length metric associated to the angular metric, that is for any two boundary points, the Tits distance between them is the infimum of lengths of all the curves on the boundary that connect them measured in the angular metric. If there is no such curve with finite length, the Tits distance between the two points is defined as infinity.

The ideal boundary of X equipped with the Tits metric is called the Tits boundary, denoted as ∂TX.

For a complete CAT(0) space, it can be shown that its ideal boundary with the angular metric is a complete CAT(1) space, and its Tits boundary is also a complete CAT(1) space. Thus for any two boundary points such that , we have

and the points can be joined by a unique geodesic segment on the boundary. If the space is proper, then any two boundary points at finite Tits distance apart can be joined by a geodesic segment on the boundary.

Examples

Related Research Articles

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.

In mathematics, a metric space is a non empty set together with a metric on the set. The metric is a function that defines a concept of distance between any two members of the set, which are usually called points. The metric satisfies a few simple properties:

3-sphere Mathematical object

In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere, the boundary of a ball in four dimensions is a 3-sphere. A 3-sphere is an example of a 3-manifold and an n-sphere.

Stereographic projection Particular mapping that projects a sphere onto a plane

In geometry, the stereographic projection is a particular mapping (function) that projects a sphere onto a plane. The projection is defined on the entire sphere, except at one point: the projection point. Where it is defined, the mapping is smooth and bijective. It is conformal, meaning that it preserves angles at which curves meet. It is neither isometric nor area-preserving: that is, it preserves neither distances nor the areas of figures.

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

In mathematics, real trees are a class of metric spaces generalising simplicial trees. They arise naturally in many mathematical contexts, in particular geometric group theory and probability theory. They are also the simplest examples of Gromov hyperbolic spaces.

In the mathematical study of metric spaces, one can consider the arclength of paths in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from the first point to the second along a path whose arclength is equal to that distance. The distance between two points of a metric space relative to the intrinsic metric is defined as the infimum of the lengths of all paths from the first point to the second. A metric space is a length metric space if the intrinsic metric agrees with the original metric of the space.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with xA. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups.

In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry. In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry, with those axioms of congruence that involve the concept of the angle dropped, and `triangle inequality', regarded as an axiom, added.

Pair of pants (mathematics) Three holed sphere

In mathematics, a pair of pants is a surface which is homeomorphic to the three-holed sphere. The name comes from considering one of the removed disks as the waist and the two others as the cuffs of a pair of pants.

In geometric topology, Busemann functions are used to study the large-scale geometry of geodesics in Hadamard spaces and in particular Hadamard manifolds. They are named after Herbert Busemann, who introduced them; he gave an extensive treatment of the topic in his 1955 book "The geometry of geodesics".

Hadamard space

In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. In the literature they are also equivalently defined as complete CAT(0) spaces.

Beltrami–Klein model Model of hyperbolic geometry

In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.

In mathematics, the Cartan–Hadamard theorem is a statement in Riemannian geometry concerning the structure of complete Riemannian manifolds of non-positive sectional curvature. The theorem states that the universal cover of such a manifold is diffeomorphic to a Euclidean space via the exponential map at any point. It was first proved by Hans Carl Friedrich von Mangoldt for surfaces in 1881, and independently by Jacques Hadamard in 1898. Élie Cartan generalized the theorem to Riemannian manifolds in 1928. The theorem was further generalized to a wide class of metric spaces by Mikhail Gromov in 1987; detailed proofs were published by Ballmann (1990) for metric spaces of non-positive curvature and by Alexander & Bishop (1990) for general locally convex metric spaces.

Quasi-isometry

In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.

In mathematics, a space, where is a real number, is a specific type of metric space. Intuitively, triangles in a space are "slimmer" than corresponding "model triangles" in a standard space of constant curvature . In a space, the curvature is bounded from above by . A notable special case is ; complete spaces are known as "Hadamard spaces" after the French mathematician Jacques Hadamard.

Gromov boundary

In mathematics, the Gromov boundary of a δ-hyperbolic space is an abstract concept generalizing the boundary sphere of hyperbolic space. Conceptually, the Gromov boundary is the set of all points at infinity. For instance, the Gromov boundary of the real line is two points, corresponding to positive and negative infinity.

In geometry of normed spaces, the Holmes–Thompson volume is a notion of volume that allows to compare sets contained in different normed spaces. It was introduced by Raymond D. Holmes and Anthony Charles Thompson.

References