Top-down cosmology

Last updated

In theoretical physics, top-down cosmology is a proposal to regard the many possible histories of a given event as having real existence. [1] This idea of multiple histories has been applied to cosmology, in a theoretical interpretation in which the universe has multiple possible cosmologies, and in which reasoning backwards from the current state of the universe to a quantum superposition of possible cosmic histories makes sense. Stephen Hawking has argued that the principles of quantum mechanics forbid a single cosmic history, [1] and has proposed cosmological theories in which the lack of a past boundary condition naturally leads to multiple histories, called the 'no-boundary proposal', the proposed Hartle–Hawking state. [2]

According to Hawking and Thomas Hertog, "The top-down approach we have described leads to a profoundly different view of cosmology, and the relation between cause and effect. Top down cosmology is a framework in which one essentially traces the histories backwards, from a spacelike surface at the present time. The noboundary histories of the universe thus depend on what is being observed, contrary to the usual idea that the universe has a unique, observer independent history." [3]

See also

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> How the universe expanded from a hot, dense state

The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. It was first proposed in 1927 by Roman Catholic priest and physicist Georges Lemaître. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the Universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang.

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch is believed to have lasted from 10−36 seconds to between 10−33 and 10−32 seconds after the Big Bang. Following the inflationary period, the universe continued to expand, but at a slower rate. The acceleration of this expansion due to dark energy began after the universe was already over 7.7 billion years old.

<span class="mw-page-title-main">Many-worlds interpretation</span> Interpretation of quantum mechanics that denies the collapse of the wavefunction

The many-worlds interpretation (MWI) is a philosophical position about how the mathematics used in quantum mechanics relates to physical reality. It asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum measurements are physically realized in some "world" or universe. In contrast to some other interpretations, the evolution of reality as a whole in MWI is rigidly deterministic and local. Many-worlds is also called the relative state formulation or the Everett interpretation, after physicist Hugh Everett, who first proposed it in 1957. Bryce DeWitt popularized the formulation and named it many-worlds in the 1970s.

The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, “The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

<span class="mw-page-title-main">Cosmogony</span> Branch of science or a theory concerning the origin of the universe

Cosmogony is any model concerning the origin of the cosmos or the universe.

<i>A Brief History of Time</i> 1988 book by Stephen Hawking

A Brief History of Time: From the Big Bang to Black Holes is a book on theoretical cosmology by English physicist Stephen Hawking. It was first published in 1988. Hawking wrote the book for readers who had no prior knowledge of physics.

The characterization of the universe as finely tuned suggests that the occurrence of life in the universe is very sensitive to the values of certain fundamental physical constants and that values different from the observed ones are more probable. If the values of any of certain free parameters in contemporary physical theories had differed only slightly from those observed, the evolution of the universe would have proceeded very differently, and "life as we know it" might not have been possible.

The chronology protection conjecture is a hypothesis first proposed by Stephen Hawking that laws of physics beyond those of standard general relativity prevent time travel on all but microscopic scales - even when the latter theory states that it should be possible. The permissibility of time travel is represented mathematically by the existence of closed timelike curves in some solutions to the field equations of general relativity. The chronology protection conjecture should be distinguished from chronological censorship under which every closed timelike curve passes through an event horizon, which might prevent an observer from detecting the causal violation.

<span class="mw-page-title-main">Neil Turok</span> South African cosmologist

Neil Geoffrey Turok is a South African physicist. He has held the Higgs Chair of Theoretical Physics at the University of Edinburgh since 2020, and has been director emeritus of the Perimeter Institute for Theoretical Physics since 2019. He specializes in mathematical physics and early-universe physics, including the cosmological constant and a cyclic model for the universe.

<span class="mw-page-title-main">James Hartle</span> American physicist (1939–2023)

James Burkett Hartle was an American theoretical physicist. He joined the faculty of the University of California, Santa Barbara in 1966, and was a member of the external faculty of the Santa Fe Institute. Hartle is known for his work in general relativity, astrophysics, and interpretation of quantum mechanics.

<span class="mw-page-title-main">Quantum cosmology</span> Attempts to develop a quantum mechanical theory of cosmology

Quantum cosmology is the attempt in theoretical physics to develop a quantum theory of the universe. This approach attempts to answer open questions of classical physical cosmology, particularly those related to the first phases of the universe.

<span class="mw-page-title-main">Hartle–Hawking state</span> Proposal concerning the state of the universe prior to the Planck epoch

The Hartle–Hawking state is a proposal in theoretical physics concerning the state of the universe prior to the Planck epoch. It is named after James Hartle and Stephen Hawking.

Imaginary time is a mathematical representation of time that appears in some approaches to special relativity and quantum mechanics. It finds uses in connecting quantum mechanics with statistical mechanics and in certain cosmological theories.

Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory.

<span class="mw-page-title-main">Stephen Hawking</span> English theoretical physicist (1942–2018)

Stephen William Hawking was an English theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between 1979 and 2009, he was the Lucasian Professor of Mathematics at Cambridge, widely viewed as one of the most prestigious academic posts in the world.

The zero-energy universe hypothesis proposes that the total amount of energy in the universe is exactly zero: its amount of positive energy in the form of matter is exactly canceled out by its negative energy in the form of gravity. Some physicists, such as Lawrence Krauss, Stephen Hawking or Alexander Vilenkin, call or called this state "a universe from nothingness", although the zero-energy universe model requires both a matter field with positive energy and a gravitational field with negative energy to exist. The hypothesis is broadly discussed in popular sources. Other cancellation examples include the expected symmetric prevalence of right- and left-handed angular momenta of objects, the observed flatness of the universe, the equal prevalence of positive and negative charges, opposing particle spin in quantum mechanics, as well as the crests and troughs of electromagnetic waves, among other possible examples in nature.

In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s.

Conformal cyclic cosmology (CCC) is a cosmological model in the framework of general relativity and proposed by theoretical physicist Roger Penrose. In CCC, the universe iterates through infinite cycles, with the future timelike infinity of each previous iteration being identified with the Big Bang singularity of the next. Penrose popularized this theory in his 2010 book Cycles of Time: An Extraordinary New View of the Universe.

<span class="mw-page-title-main">Thomas Hertog</span> Belgian cosmologist and former collaborator of Professor Stephen Hawking

Thomas Hertog is a Belgian cosmologist at KU Leuven university and was a key collaborator of Professor Stephen Hawking.

<i>On the Origin of Time</i> 2023 book by Thomas Hertog

On the Origin of Time is a 2023 book by physicist Thomas Hertog about the theories of Stephen Hawking. Thomas Hertog is a Belgian cosmologist working at KU Leuven university. He was a key collaborator of Professor Stephen Hawking. This book was written by Thomas Hertog at the request of Stephen Hawking at the end of his life in order to popularize the cosmological theory that they developed together.

References

  1. 1 2 Ball, Philip (2006-06-21). "Hawking rewrites history... backwards". Nature: news060619–6. doi:10.1038/news060619-6. ISSN   0028-0836. S2CID   122979772.
  2. Spoon, M. (2021, February 22). How Stephen Hawking Worked. HowStuffWorks. https://science.howstuffworks.com/dictionary/famous-scientists/physicists/stephen-hawking3.htm
  3. Hawking, S. W.; Hertog, Thomas (2006-06-23). "Populating the landscape: A top-down approach". Physical Review D. 73 (12): 123527. arXiv: hep-th/0602091 . Bibcode:2006PhRvD..73l3527H. doi:10.1103/PhysRevD.73.123527. S2CID   9856127.