Torricelli's experiment

Last updated
Evangelista Torricelli. Line engraving by P. Anichinius. Wellcome V0005861 Evangelista Torricelli. Line engraving by P. Anichinius. Wellcome V0005861.jpg
Evangelista Torricelli. Line engraving by P. Anichinius. Wellcome V0005861
Torricelli Invented the mercury barometer, recorded in the books of Camille Flammarion (1923) Baro 1.png
Torricelli Invented the mercury barometer, recorded in the books of Camille Flammarion (1923)

Torricelli's experiment was invented in Pisa in 1643 by the Italian scientist Evangelista Torricelli (1608-1647). The purpose of his experiment is to prove that the source of vacuum comes from atmospheric pressure. [1]

Contents

Context

For much of human history, the pressure of gases like air was ignored, denied, or taken for granted, but as early as the 6th century BC, Greek philosopher Anaximenes of Miletus claimed that all things are made of air that is simply changed by varying levels of pressure. He could observe water evaporating, changing to a gas, and felt that this applied even to solid matter. More condensed air made colder, heavier objects, and expanded air made lighter, hotter objects. This was akin to how gases really do become less dense when warmer, and more dense when cooler.

Aristotle stated in some writings that "nature abhors a vacuum", and also that air has no mass/weight. The popularity of that philosopher kept this the dominant view in Europe for two thousand years. Even Galileo accepted it, believing that it's the pull of vacuum that creates a siphon, a pull overcome if the siphon is high enough.

In the 17th century, Evangelista Torricelli conducted experiments with mercury that allowed him to measure the presence of air. He would dip a glass tube, closed at one end, into a bowl of mercury and raise the closed end up out of it, keeping the open end submerged. The weight of the mercury would pull it down, leaving a partial vacuum at the far end. This validated his belief that air/gas has mass, creating pressure on things around it. The discovery helped bring Torricelli to the conclusion:

We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.

This test was essentially the first documented pressure gauge.

In 1647 Valerianus Magnus publishes his Demonstratio ocularis, in which he claims to have proved the existence of the vacuum in the court of the King of Poland Ladislaus IV in Warsaw by means of an experiment identical to that carried out by Torricelli three years earlier. Three months after Magnus, Blaise Pascal publishes his Expériences nouvelles touchant le vide, giving details of his first barometric experiments.

Pascal went farther than Torricelli, having his brother-in-law try the experiment at different altitudes on a mountain, and finding indeed that the farther down in the ocean of atmosphere, the higher the pressure.

Procedure

The experiment uses a simple barometer to measure the pressure of air, filling it with mercury up until 75% of the tube. Any air bubbles in the tube must be removed by inverting several times. After that, a clean mercury is filled once again until the tube is completely full. The barometer is then placed inverted on the dish full of mercury. This causes the mercury in the tube to fall down until the difference between mercury on the surface and in the tube is about 760 mm. [2] Even when the tube is shaken or tilted, the difference between the surface and in the tube is not affected due to the influence of atmospheric pressure.

Conclusion

Demonstration of Torricelli pump at Questacon Demonstration of Torricelli pump at Questacon 2.jpg
Demonstration of Torricelli pump at Questacon

Torricelli concluded that the mercury fluid in the tube is aided by the atmospheric pressure that is present on the surface of mercury fluid on the dish. He also stated that the changes of liquid level from day to day are caused by the variation of atmospheric pressure. The empty space in the tube is called the Torricellian vacuum. [3]

1 pascal = 1 Newton per square metre (SI unit) 1 hectopascal is 100 pascals

Additional images

Related Research Articles

<span class="mw-page-title-main">Pressure measurement</span> Analysis of force applied by a fluid on a surface

Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

<span class="mw-page-title-main">Pressure</span> Force distributed over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

The torr is a unit of pressure based on an absolute scale, defined as exactly 1/760 of a standard atmosphere. Thus one torr is exactly 101325/760 pascals (≈ 133.32 Pa).

<span class="mw-page-title-main">Vacuum pump</span> Equipment generating a relative vacuum

A vacuum pump is a type of pump device that draws gas particles from a sealed volume in order to leave behind a partial vacuum. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to antiquity.

<span class="mw-page-title-main">Vacuum</span> Space that is empty of matter

A vacuum is space devoid of matter. The word is derived from the Latin adjective vacuus meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a perfect vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term in vacuo is used to describe an object that is surrounded by a vacuum.

Atmospheric pressure, also known as air pressure or barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

<span class="mw-page-title-main">Barometer</span> Scientific instrument used to measure atmospheric pressure

A barometer is a scientific instrument that is used to measure air pressure in a certain environment. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis to help find surface troughs, pressure systems and frontal boundaries.

<span class="mw-page-title-main">Pascal (unit)</span> SI derived unit of pressure

The pascal is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is a SI coherent derived unit defined as one newton per square metre (N/m2). It is also equivalent to 10 barye in the CGS system. Common multiple units of the pascal are the hectopascal, which is equal to one millibar, and the kilopascal, which is equal to one centibar.

<span class="mw-page-title-main">Magdeburg hemispheres</span> Pair of copper hemispheres designed to demonstrate the power of atmospheric pressure

The Magdeburg hemispheres are a pair of large copper hemispheres with mating rims that were used in a famous 1654 experiment to demonstrate the power of atmospheric pressure. When the rims were sealed with grease and the air was pumped out, the sphere contained a vacuum and could not be pulled apart by teams of horses. Once the valve was opened, air rushed in and the hemispheres were easily separated. The Magdeburg hemispheres were invented by German scientist and mayor of Magdeburg, Otto von Guericke, to demonstrate the air pump that he had invented and the concept of atmospheric pressure.

<span class="mw-page-title-main">Evangelista Torricelli</span> Italian physicist and matematician (1608–1647)

Evangelista Torricelli was an Italian physicist and mathematician, and a student of Galileo. He is best known for his invention of the barometer, but is also known for his advances in optics and work on the method of indivisibles. The torr is named after him.

<span class="mw-page-title-main">Bar (unit)</span> Unit of pressure equal to 100,000 Pa

The bar is a metric unit of pressure defined as 100,000 Pa (100 kPa), though not part of the International System of Units (SI). A pressure of 1 bar is slightly less than the current average atmospheric pressure on Earth at sea level. By the barometric formula, 1 bar is roughly the atmospheric pressure on Earth at an altitude of 111 metres at 15 °C.

<span class="mw-page-title-main">Siphon</span> Device involving the flow of liquids through tubes

A siphon is any of a wide variety of devices that involve the flow of liquids through tubes. In a narrower sense, the word refers particularly to a tube in an inverted "U" shape, which causes a liquid to flow upward, above the surface of a reservoir, with no pump, but powered by the fall of the liquid as it flows down the tube under the pull of gravity, then discharging at a level lower than the surface of the reservoir from which it came.

The standard atmosphere is a unit of pressure defined as 101325 Pa. It is sometimes used as a reference pressure or standard pressure. It is approximately equal to Earth's average atmospheric pressure at sea level.

<span class="mw-page-title-main">Millimetre of mercury</span> Manometric unit of pressure

A millimetre of mercury is a manometric unit of pressure, formerly defined as the extra pressure generated by a column of mercury one millimetre high, and currently defined as exactly 133.322387415 pascals or exactly 133.322 pascals. It is denoted mmHg or mm Hg.

Inch of mercury is a non-SI unit of measurement for pressure. It is used for barometric pressure in weather reports, refrigeration and aviation in the United States.

Vacuum engineering is the field of engineering that deals with the practical use of vacuum in industrial and scientific applications. Vacuum may improve the productivity and performance of processes otherwise carried out at normal air pressure, or may make possible processes that could not be done in the presence of air. Vacuum engineering techniques are widely applied in materials processing such as drying or filtering, chemical processing, application of metal coatings to objects, manufacture of electron devices and incandescent lamps, and in scientific research.

In fluid mechanics, pressure head is the height of a liquid column that corresponds to a particular pressure exerted by the liquid column on the base of its container. It may also be called static pressure head or simply static head.

Gasparo Berti was an Italian mathematician, astronomer and physicist. He was probably born in Mantua and spent most of his life in Rome. He is most famous today for his experiment in which he unknowingly created the first working barometer. Though he was best known for his work in mathematics and physics, little of his work in either survives.

Jacques-Alexandre Le Tenneur was a French mathematician who defended Galileo Galilei’s ideas. He corresponded with fellow mathematicians such as Pierre Gassendi, Pierre Hérigone and Marin Mersenne. It is unclear when or where he died but he probably lived from 1610 to 1660.

<span class="mw-page-title-main">Mercury pressure gauge</span> Type of manometer

A mercury pressure gauge is a type of manometer using mercury as the working fluid. The most basic form of this instrument is a U-shaped glass tube filled with mercury. More complex versions deal with very high pressure or have better means of filling with mercury.

References

  1. "Torricelli's experiment. Simple barometer". PhysicMax. Retrieved 7 December 2016.
  2. "Torricelli's experiment". Wolfram. Retrieved 7 December 2016.
  3. Williams, Richard. "Torricelli Demonstrates the Existence of a Vacuum". APS Physic. Retrieved 7 December 2016.