Traffic optimization

Last updated

Traffic optimization are the methods by which time stopped in road traffic (particularly, at traffic signals) is reduced.

Contents

Need for traffic optimization

Texas Transportation Institute estimates travel delays of between 17–55 hours of delay per person per year relating to congestion on the streets. [1] Traffic device optimization hence becomes a significant aspect of operations.

Techniques

Several techniques exist to reduce delay of traffic. Generally the algorithms attempt to reduce delays (user time), stops, exhaust gas emissions, or some other measure of effectiveness. Many optimization software are geared towards pre-timed coordinated systems.

Normally optimization of signals along a road is a challenging and expensive task, because the sources for traffic monitoring have been limited to inductive loops, cameras or manually counting. However, due to recent advances in information technology, portable devices with Bluetooth and Wi-Fi communication are becoming more common, enabling real-time continuous traffic monitoring and adjustments to traffic signal timing.

By placing sensors along roads, tracking Bluetooth and Wi-Fi devices in passing vehicles, the solution is able to accurately detect and record how long it takes a car to drive along a corridor, segment by segment and in total. This provides historic data for traditional timing methods but also enables real-time feedback to changes in signal programs along with the ability to continuously detect traffic levels and travel time to trigger transitions among programs.

Excessive city traffic can be the most frustrating part about living in urban areas. The solution to metro traffic is a well-balanced mixture of expanded public transit options, remote work, differentiated hubs within the metro area, and electronic tolls. Public transit will help commuters arrive safely at their place of work while eliminating the stress of bumper to bumper traffic. Toll roads, especially those with fluctuating tolls dependent upon the time of day and/or level of traffic, also help to improve the level of traffic by deterring some from driving the roadways. Some may choose to work remotely, or run their errands at a different time of day. Finally, differentiated business hubs within a metro area can help alleviate traffic by directing it to several different areas, rather than one centralized location. Cities that spend time and resources on making travel efficient within their borders will attract a healthier, wealthier, and happier population.

Real time traffic control

Several systems are capable of monitoring the traffic arrivals and adjusting timings based on the detected inputs. Traffic Detectors may range from Metal Detectors to Detectors that use Image Detection. Metal detectors are the most popular in use. Image detection devices exhibit numerous problems including degradation during bad weather and lighting.

Traffic actuated signal systems use detectors to adjust timing for:

  1. Only the main street - semi-actuated system
  2. Both main and cross streets - fully actuated system.

The above method is primitive real-time signal optimization at best. This method will optimize one traffic signal at a time. However, in the real world, a motorist's commute involves driving through multiple signals. Thus, multiple traffic signals need to be collectively synchronized in order to be effective. One such system that has gained significant popularity in the United States is InSync.

Criticism

It has been suggested that the benefits of traffic optimization have never been scientifically justified. It inherently favors motorized traffic over alternate modes such as pedestrians, bicyclists, and transit users and may promote more auto use. [2] It is suggested that an alternate approach could involve traffic calming, and a conceptual focus on the movement of people and goods rather than vehicles.

It can be argued that Traffic optimization inherently calms traffic due to discouraging speeding and limits acceleration and deceleration thus reducing the noise pollution produced by vehicles.

See also

Related Research Articles

Instrumentation is a collective term for measuring instruments that are used for indicating, measuring and recording physical quantities. The term has its origins in the art and science of scientific instrument-making.

<span class="mw-page-title-main">Intelligent transportation system</span> Advanced application

An intelligent transportation system (ITS) is an advanced application which aims to provide innovative services relating to different modes of transport and traffic management and enable users to be better informed and make safer, more coordinated, and 'smarter' use of transport networks.

<span class="mw-page-title-main">Ramp meter</span> Traffic management system

A ramp meter, ramp signal, or metering light is a device, usually a basic traffic light or a two-section signal light together with a signal controller, that regulates the flow of traffic entering freeways according to current traffic conditions. Ramp meters are used at freeway on-ramps to manage the rate of automobiles entering the freeway. Ramp metering systems have proved to be successful in decreasing traffic congestion and improving driver safety.

<span class="mw-page-title-main">Traffic light</span> Signaling device to control competing flows of traffic

Traffic lights, traffic signals, or stoplights – also known as robots in South Africa – are signalling devices positioned at road intersections, pedestrian crossings, and other locations in order to control the flow of traffic.

A Controller Area Network is a vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's applications without a host computer. It is a message-based protocol, designed originally for multiplex electrical wiring within automobiles to save on copper, but it can also be used in many other contexts. For each device, the data in a frame is transmitted serially but in such a way that if more than one device transmits at the same time, the highest priority device can continue while the others back off. Frames are received by all devices, including by the transmitting device.

Floating car data (FCD) in traffic engineering and management is typically timestamped geo-localization and speed data directly collected by moving vehicles, in contrast to traditional traffic data collected at a fixed location by a stationary device or observer. In a physical interpretation context, FCD provides a Lagrangian description of the vehicle movements whereas stationary devices provide an Eulerian description. The participating vehicle acts itself consequently as a moving sensor using an onboard GPS receiver or cellular phone. The most common and widespread use of FCD is to determine the traffic speed on the road network. Based on these data, traffic congestion can be identified, travel times can be calculated, and traffic reports can be rapidly generated. In contrast to stationary devices such as traffic cameras, number plate recognition systems, and induction loops embedded in the roadway, no additional hardware on the road network is necessary.

AES47 is a standard which describes a method for transporting AES3 professional digital audio streams over Asynchronous Transfer Mode (ATM) networks.

An induction or inductive loop is an electromagnetic communication or detection system which uses a moving magnet or an alternating current to induce an electric current in a nearby wire. Induction loops are used for transmission and reception of communication signals, or for detection of metal objects in metal detectors or vehicle presence indicators. A common modern use for induction loops is to provide hearing assistance to hearing-aid users.

Signal timing is the technique which traffic engineers use to distribute right-of-way at a signalized intersection. The process includes selecting appropriate values for timing, which are implemented in specialized traffic signal controllers. Signal timing involves deciding how much green time the traffic signal provides an intersection by movement or approach, how long the pedestrian WALK signal should be, whether trains or buses should be prioritized, and numerous other factors.

Time base correction (TBC) is a technique to reduce or eliminate errors caused by mechanical instability present in analog recordings on mechanical media.

The Sydney Coordinated Adaptive Traffic System, abbreviated SCATS, is an intelligent transportation system that manages the dynamic timing of signal phases at traffic signals, meaning that it tries to find the best phasing for a traffic situation. SCATS is based on the automatic plan selection from a library in response to the data derived from loop detectors or other road traffic sensors.

<span class="mw-page-title-main">Bus priority signal</span>

Bus priority or transit signal priority (TSP) is a name for various techniques to improve service and reduce delay for mass transit vehicles at intersections controlled by traffic signals. TSP techniques are most commonly associated with buses, but can also be used along tram/streetcar or light rail lines, especially those that mix with or conflict with general vehicular traffic.

Latency refers to a short period of delay between when an audio signal enters a system and when it emerges. Potential contributors to latency in an audio system include analog-to-digital conversion, buffering, digital signal processing, transmission time, digital-to-analog conversion and the speed of sound in the transmission medium.

<span class="mw-page-title-main">Queue jump</span> Road provision allowing buses to get to the front of traffic at intersections

A queue jump is a type of roadway geometry used to provide preference to buses at intersections, often found in bus rapid transit systems. It consists of an additional travel lane on the approach to a signalised intersection. This lane is often restricted to transit vehicles only. A queue jump lane is usually accompanied by a signal which provides a phase specifically for vehicles within the queue jump. Vehicles in the queue jump lane get a "head-start" over other queued vehicles and can therefore merge into the regular travel lanes immediately beyond the signal. The intent of the lane is to allow the higher-capacity vehicles to cut to the front of the queue, reducing the delay caused by the signal and improving the operational efficiency of the transit system.

Audio-to-video synchronization refers to the relative timing of audio (sound) and video (image) parts during creation, post-production (mixing), transmission, reception and play-back processing. AV synchronization can be an issue in television, videoconferencing, or film.

<span class="mw-page-title-main">Traffic light control and coordination</span>

The normal function of traffic lights requires more than sight control and coordination to ensure that traffic and pedestrians move as smoothly, and safely as possible. A variety of different control systems are used to accomplish this, ranging from simple clockwork mechanisms to sophisticated computerized control and coordination systems that self-adjust to minimize delay to people using the junction.

<span class="mw-page-title-main">Traffic count</span> Determination of the number of vehicles

A traffic count is a count of vehicular or pedestrian traffic, which is conducted along a particular road, path, or intersection. A traffic count is commonly undertaken either automatically, or manually by observers who visually count and record traffic on a hand-held electronic device or tally sheet. Traffic counts can be used by local councils to identify which routes are used most, and to either improve that road or provide an alternative if there is an excessive amount of traffic. Also, some geography fieldwork involves a traffic count. Traffic counts provide the source data used to calculate the Annual Average Daily Traffic (AADT), which is the common indicator used to represent traffic volume. Traffic counts are useful for comparing two or more roads, and can also be used alongside other methods to find out where the central business district (CBD) of a settlement is located. Traffic counts that include speeds are used in speed limit enforcement efforts, highlighting peak speeding periods to optimise speed camera use and educational efforts.

<span class="mw-page-title-main">IRIS (transportation software)</span>

IRIS is an open-source Advanced Traffic Management System (ATMS) software project developed by the Minnesota Department of Transportation. It is used by transportation agencies to monitor and manage interstate and highway traffic. IRIS uses the GPL license.

Scalable Urban Traffic Control (SURTRAC) is an adaptive traffic control system developed by researchers at the Robotics Institute, Carnegie Mellon University. SURTAC dynamically optimizes the control of traffic signals to improve traffic flow for both urban grids and corridors; optimization goals include less waiting, reduced traffic congestion, shorter trips, and less pollution. The core control engine combines schedule-driven intersection control with decentralized coordination mechanisms. Since June 2012, a pilot implementation of the SURTRAC system has been deployed on nine intersections in the East Liberty neighborhood of Pittsburgh, Pennsylvania. SURTRAC reduced travel times by more than 25% on average, and wait times were reduced by an average of 40%. A second phase of the pilot program for the Bakery Square district has been running since October 2013. In 2015, Rapid Flow Technologies was formed to commercialize the SURTRAC technology. The lead inventor of this technology, Dr. Xiao-Feng Xie, states that he has no association with and does not provide technical supports for this company.

<span class="mw-page-title-main">Hubli-Dharwad Bus Rapid Transit System</span> Bus system in Hubballi and Dharwad, India

Hubali-Dharwad BRTS (HDBRTS) is a bus rapid transit system built to serve the twin cities of Hubali and Dharwad, located in the North-Western part of Karnataka state in India. Hubali-Dharwad BRTS (HDBRTS) project is a Government of Karnataka initiative to foster long-term economic growth in the region. The project promotes fast, safe, comfortable, convenient and affordable public transportation between the twin cities and aims to reduce congestion and air pollution in the region.

References

  1. "Archived copy" (PDF). mobility.tamu.edu. Archived from the original (PDF) on 30 December 2008. Retrieved 12 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  2. Michael J. Vandeman, "Is Traffic Signal Synchronization Justifiable?", April 15, 1994