Transcendental curve

Last updated

In analytical geometry, a transcendental curve is a curve that is not an algebraic curve. [1] Here for a curve, C, what matters is the point set (typically in the plane) underlying C, not a given parametrisation. For example, the unit circle is an algebraic curve (pedantically, the real points of such a curve); the usual parametrisation by trigonometric functions may involve those transcendental functions, but certainly the unit circle is defined by a polynomial equation. (The same remark applies to elliptic curves and elliptic functions; and in fact to curves of genus > 1 and automorphic functions.)

The properties of algebraic curves, such as Bézout's theorem, give rise to criteria for showing curves actually are transcendental. For example, an algebraic curve C either meets a given line L in a finite number of points, or possibly contains all of L. Thus a curve intersecting any line in an infinite number of points, while not containing it, must be transcendental. This applies not just to sinusoidal curves, therefore; but to large classes of curves showing oscillations.

The term is originally attributed to Leibniz.

Further examples

Related Research Articles

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

<span class="mw-page-title-main">Sphere</span> Set of points equidistant from a center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Spiral</span> Curve that winds around a central point

In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects.

<span class="mw-page-title-main">Curve</span> Mathematical idealization of the trace left by a moving point

In mathematics, a curve is an object similar to a line, but that does not have to be straight.

Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point. Because of this, the elliptic geometry described in this article is sometimes referred to as single elliptic geometry whereas spherical geometry is sometimes referred to as double elliptic geometry.

In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using the basic operations of addition, subtraction, multiplication, and division. This is in contrast to an algebraic function.

In number theory, the local zeta functionZ(Vs) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as

In the mathematical field of complex analysis, a branch point of a multivalued function is a point such that if the function is -valued at that point, all of its neighborhoods contain a point that has more than values. Multi-valued functions are rigorously studied using Riemann surfaces, and the formal definition of branch points employs this concept.

In mathematics, an expression or equation is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context.

<span class="mw-page-title-main">Hyperbolic angle</span> Argument of the hyperbolic functions

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

<span class="mw-page-title-main">Exsecant</span> Trigonometric function defined as secant minus one

The external secant function is a trigonometric function defined in terms of the secant function:

In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties to the real numbers.

<span class="mw-page-title-main">Inverse curve</span> Curve created by a geometric operation

In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k2. The inverse of the curve C is then the locus of P as Q runs over C. The point O in this construction is called the center of inversion, the circle the circle of inversion, and k the radius of inversion.

This is a gallery of curves used in mathematics, by Wikipedia page. See also list of curves.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Newman, JA, The Universal Encyclopedia of Mathematics, Pan Reference Books, 1976, ISBN   0-330-24396-9, "Transcendental curves".