Transient modelling

Last updated

Transient modelling is a way of looking at a process with the primary criterion of time, observing the pattern of changes in the subject being studied over time. Its obverse is Steady state, where you might know only the starting and ending figures but do not understand the process by which they were derived.

Transient models will reveal the pattern of a process, which might be sinusoidal or another shape that will help to design a better system to manage that process. Transient models can be done on a spreadsheet with an ability to generate charts, or by any software that can handle data of inputs and outputs and generate some sort of a display. Transient modelling does not need a computer. It is a methodology that has worked for centuries, by observers noting patterns of change against time, analysing the result and proposing improved design solutions.

A simple example is a garden water tank. This is being topped up by rainfall from the roof, but when the tank is full, the remaining water goes to the drain. When the gardener draws water off, the level falls. If the garden is large and the summer is hot, a steady state will occur in summer where the tank is nearly always empty in summer. If the season is wet, the garden is getting water from the sky, and the tank is not being emptied sufficiently, so in steady state it will be observed to be always full. If the gardener has a way of observing the level of water in the tank, and a record of daily rainfall and temperatures, and is precisely metering the amount of water being drawn off every day, the numbers and the dates can be recorded in spreadsheet at daily intervals. After enough samples are taken, a chart can be developed to model the rise and fall pattern over a year, or over 2 years. With a better understanding of the process, it might emerge that a 200litre water tank would run out 20–25 days a year, but a 400-litre water tank would never run out, and a 300-litre tank would run out only 1-2 day a year and therefore that would be an acceptable risk and it would be the most economical solution.

One of the best examples of transient modelling is transient climate simulation. The analysis of ice cores in glaciers to understand climate change. Ice cores have thousands of layers, each of which represents a winter season of snowfall, and trapped in these are bubbles of air, particle of space dust and pollen which reveal climatic data of the time. By mapping these to a time scale, scientists can analyse the fluctuations over time and make predictions for the future.

Transient modelling is the basis of weather forecasting, of managing ecosystems, rail timetabling, managing the electricity grid, setting the national budget, floating currency, understanding traffic flows on a freeway, solar gains on glass fronted buildings, or even of checking the day-to-day transactions of one's monthly bank statement.

With the transient modelling approach, you understand the whole process better when the inputs and outputs are graphed against time.

Related Research Articles

Programmable logic controller digital computer used for automation of electromechanical processes

A programmable logic controller (PLC) or programmable controller is an industrial digital computer which has been ruggedized and adapted for the control of manufacturing processes, such as assembly lines, or robotic devices, or any activity that requires high reliability, ease of programming and process fault diagnosis.

In engineering, a transfer function of an electronic or control system component is a mathematical function which theoretically models the device's output for each possible input. In its simplest form, this function is a two-dimensional graph of an independent scalar input versus the dependent scalar output, called a transfer curve or characteristic curve. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.

Flood Overflow of water that submerges land that is not normally submerged

A flood is an overflow of water that submerges land that is usually dry. In the sense of "flowing water", the word may also be applied to the inflow of the tide. Floods are an area of study of the discipline hydrology and are of significant concern in agriculture, civil engineering and public health.

Lotus Improv spreadsheet program

Lotus Improv is a discontinued spreadsheet program from Lotus Development released in 1991 for the NeXTSTEP platform and then for Windows 3.1 in 1993. Development was put on hiatus in 1994 after slow sales on the Windows platform, and officially ended in April 1996 after Lotus was purchased by IBM.

Computer simulation simulation, run on a single computer, or a network of computers, to reproduce behavior of a system; modeling a real physical system in a computer

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of and/or the outcome of a real-world or physical system. Since they allow to check the reliability of chosen mathematical models, computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics, astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system can be divided and allocated to different sources of uncertainty in its inputs. A related practice is uncertainty analysis, which has a greater focus on uncertainty quantification and propagation of uncertainty; ideally, uncertainty and sensitivity analysis should be run in tandem.

Automatic process control in continuous production processes is a combination of control engineering and chemical engineering disciplines that uses industrial control systems to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. It is implemented widely in industries such as oil refining, pulp and paper manufacturing, chemical processing and power generating plants.

Process-based management is a management approach that views a business as a collection of processes, managed to achieve a desired result. The processes are managed and improved by organisation in purpose of achieving their vision, mission and core value. A clear correlation between processes and the vision supports the company to plan strategies, build a business structure and use sufficient resources that are required to achieve success in the long run.

A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in chemical process analysis. The design of a chemical reactor deals with multiple aspects of chemical engineering. Chemical engineers design reactors to maximize net present value for the given reaction. Designers ensure that the reaction proceeds with the highest efficiency towards the desired output product, producing the highest yield of product while requiring the least amount of money to purchase and operate. Normal operating expenses include energy input, energy removal, raw material costs, labor, etc. Energy changes can come in the form of heating or cooling, pumping to increase pressure, frictional pressure loss or agitation.

A mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique. The exact conservation law used in the analysis of the system depends on the context of the problem, but all revolve around mass conservation, i.e., that matter cannot disappear or be created spontaneously.

The United States Environmental Protection Agency (EPA) Storm Water Management Model is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas. It can simulate the Rainfall- runoff, runoff, evaporation, infiltration and groundwater connection for roots, streets, grassed areas, rain gardens and ditches and pipes, for example. The hydrology component of SWMM operates on a collection of subcatchment areas divided into impervious and pervious areas with and without depression storage to predict runoff and pollutant loads from precipitation, evaporation and infiltration losses from each of the subcatchment. Besides, low impact development (LID) and best management practice areas on the subcatchment can be modeled to reduce the impervious and pervious runoff. The routing or hydraulics section of SWMM transports this water and possible associated water quality constituents through a system of closed pipes, open channels, storage/treatment devices, ponds, storages, pumps, orifices, weirs, outlets, outfalls and other regulators. SWMM tracks the quantity and quality of the flow generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period composed of multiple fixed or variable time steps. The water quality constituents such as water quality constituents can be simulated from buildup on the subcatchments through washoff to a hydraulic network with optional first order decay and linked pollutant removal, best management practice and low-impact development removal and treatment can be simulated at selected storage nodes. SWMM is one of the hydrology transport models which the EPA and other agencies have applied widely throughout North America and through consultants and universities throughout the world. The latest update notes and new features can be found on the EPA website in the download section. Recently added in November 2015 were the EPA SWMM 5.1 Hydrology Manual and in 2016 the EPA SWMM 5.1 Hydraulic Manual and EPA SWMM 5.1 Water Quality Volume (III) + Errata

The input–process–output (IPO) model, or input-process-output pattern, is a widely used approach in systems analysis and software engineering for describing the structure of an information processing program or other process. Many introductory programming and systems analysis texts introduce this as the most basic structure for describing a process.

Hydrological transport model

An hydrological transport model is a mathematical model used to simulate the flow of rivers, streams, groundwater movement or drainage front displacement, and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water quality and drainage was driven by environmental legislation, and at a similar time widespread access to significant computer power became available. Much of the original model development took place in the United States and United Kingdom, but today these models are refined and used worldwide.

Tropical cyclone rainfall forecasting

Tropical cyclone rainfall forecasting involves using scientific models and other tools to predict the precipitation expected in tropical cyclones such as hurricanes and typhoons. Knowledge of tropical cyclone rainfall climatology is helpful in the determination of a tropical cyclone rainfall forecast. More rainfall falls in advance of the center of the cyclone than in its wake. The heaviest rainfall falls within its central dense overcast and eyewall. Slow moving tropical cyclones, like Hurricane Danny and Hurricane Wilma, can lead to the highest rainfall amounts due to prolonged heavy rains over a specific location. However, vertical wind shear leads to decreased rainfall amounts, as rainfall is favored downshear and slightly left of the center and the upshear side is left devoid of rainfall. The presence of hills or mountains near the coast, as is the case across much of Mexico, Haiti, the Dominican Republic, much of Central America, Madagascar, Réunion, China, and Japan act to magnify amounts on their windward side due to forced ascent causing heavy rainfall in the mountains. A strong system moving through the mid latitudes, such as a cold front, can lead to high amounts from tropical systems, occurring well in advance of its center. Movement of a tropical cyclone over cool water will also limit its rainfall potential. A combination of factors can lead to exceptionally high rainfall amounts, as was seen during Hurricane Mitch in Central America.

SahysMod agricultural software

SahysMod is a computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge in irrigated agricultural lands, using different hydrogeologic and aquifer conditions, varying water management options, including the use of ground water for irrigation, and several crop rotation schedules, whereby the spatial variations are accounted for through a network of polygons.

SaltMod agricultural software

SaltMod is computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge (hydrology) in irrigated agricultural lands, using different (geo)hydrologic conditions, varying water management options, including the use of ground water for irrigation, and several cropping rotation schedules. The water management options include irrigation, drainage, and the use of subsurface drainage water from pipe drains, ditches or wells for irrigation.

Hydrological model simplification of a real-world system that aids in understanding, predicting, and managing water resources

A hydrologic model is a simplification of a real-world system that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.

Global Energy and Water Exchanges international research project

The Global Energy and Water cycle Exchanges project is an international research project and a core project of the World Climate Research Programme (WCRP).

In science, computing, and engineering, a black box is a device, system or object which can be viewed in terms of its inputs and outputs, without any knowledge of its internal workings. Its implementation is "opaque" (black). Almost anything might be referred to as a black box: a transistor, an engine, an algorithm, the human brain, an institution or government.

Land change modeling Geographic and ecological field of study

Land change models (LCMs) describe, project, and explain changes in and the dynamics of land use and land-cover. LCMs are a means of understanding ways that humans are changing the Earth's surface in the past, present, in forecasting land change into the future.

References