Translation Confinement Sustainment experiment

Last updated

The Translation Confinement Sustainment experiment (TCS) was a plasma physics experiment at the University of Washington's Redmond Plasma Physics Laboratory from 2002 until 2009. [1] The experiment studied magnetic plasma confinement to support controlled nuclear fusion experiments. Specifically, TCS pioneered the sustainment and heating of a Field-Reversed Configuration (FRC) by Rotating Magnetic Field (RMF).

Contents

The experiment was upgraded in 2006 to form the Translation Confinement Sustainment experiment -Upgraded (TCS-U). [2]

Background

FRCs are of interest to the plasma physics community because of their confinement properties and their small size. While most large fusion experiments in the world are tokamaks, FRCs are seen as a viable alternative because of their higher Beta, meaning the same power output could be produced from a smaller volume of plasma, and their good plasma stability.

History

In the 1990s, the Large-S Experiment (LSX) had demonstrated that there exist kinetically stabilized regimes of operation in which FRC reactors could operate. However, the LSX used a method of forming FRCs called a theta-pinch, which does not allow FRCs to be further sustained and heated. The US Department of Energy funded the TCS program as an extension of LSX, in order to demonstrate the RMF method of sustaining FRCs formed via the theta-pinch method. [3]

TCS was contemporary with other RMF-FRCs such as the STX, the PV Rotamak, and the PFRC.

Related Research Articles

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, only one design, an inertial confinement laser-driven fusion machine at the US National Ignition Facility, has in any sense produced a positive fusion energy gain factor, i.e. more power output than input.

<span class="mw-page-title-main">Reversed field pinch</span> Magnetic field plasma confinement device

A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Plasma fuel confined by magnetic fields

Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development.

<span class="mw-page-title-main">Field-reversed configuration</span> Magnetic confinement fusion reactor

A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.

<span class="mw-page-title-main">Spheromak</span>

A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the spheromak are nearly balanced, resulting in long-lived (microsecond) confinement times without external fields. Spheromaks belong to a type of plasma configuration referred to as the compact toroids. A spheromak can be made and sustained using magnetic flux injection, leading to a dynomak.

<span class="mw-page-title-main">Pinch (plasma physics)</span> Compression of an electrically conducting filament by magnetic forces

A pinch is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power.

Magnetized Target Fusion (MTF) is a fusion power concept that combines features of magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). Like the magnetic approach, the fusion fuel is confined at lower density by magnetic fields while it is heated into a plasma. As with the inertial approach, fusion is initiated by rapidly squeezing the target to greatly increase fuel density and temperature. Although the resulting density is far lower than in ICF, it is thought that the combination of longer confinement times and better heat retention will let MTF operate, yet be easier to build. The term magneto-inertial fusion (MIF) is similar, but encompasses a wider variety of arrangements. The two terms are often applied interchangeably to experiments.

Compact toroids are a class of toroidal plasma configurations that are self-stable, and whose configuration does not require magnet coils running through the center of the toroid. They are studied primarily in the field of fusion energy, where the lack of complex magnets and a simple geometry may allow the construction of dramatically simpler and less expensive fusion reactors.

<span class="mw-page-title-main">Magnetized liner inertial fusion</span> Method of producing controlled nuclear fusion

Magnetized liner inertial fusion (MagLIF) is an emerging method of producing controlled nuclear fusion. It is part of the broad category of inertial fusion energy (IFE) systems, which drives the inward movement of fusion fuel, thereby compressing it to reach densities and temperatures where fusion reactions occur. Previous IFE experiments used laser drivers to reach these conditions, whereas MagLIF uses a combination of lasers for heating and Z-pinch for compression. A variety of theoretical considerations suggest such a system will reach the required conditions for fusion with a machine of significantly less complexity than the pure-laser approach. There are currently at least two facilities testing feasibility of the MagLIF concept, the Z-machine at Sandia Labs in the US and Primary Test Stand (PTS) located in Mianyang, China.

TAE Technologies, formerly Tri Alpha Energy, is an American company based in Foothill Ranch, California developing aneutronic fusion power. The company's design relies on an advanced beam-driven field-reversed configuration (FRC), which combines features from accelerator physics and other fusion concepts in a unique fashion, and is optimized for hydrogen-boron fuel, also known as proton-boron and p-B11. It regularly publishes theoretical and experimental results in academic journals with hundreds of publications and posters at scientific conferences and in a research library hosting these articles on its website. TAE has developed five generations of original fusion platforms with a sixth currently in development. It aims to manufacture a prototype commercial fusion reactor by 2030.

<span class="mw-page-title-main">Princeton field-reversed configuration</span>

The Princeton field-reversed configuration (PFRC) is a series of experiments in plasma physics, an experimental program to evaluate a configuration for a fusion power reactor, at the Princeton Plasma Physics Laboratory (PPPL). The experiment probes the dynamics of long-pulse, collisionless, low s-parameter field-reversed configurations (FRCs) formed with odd-parity rotating magnetic fields. FRCs are the evolution of the Greek engineer's Nicholas C. Christofilos original idea of E-layers which he developed for the Astron fusion reactor. It aims to experimentally verify the physics predictions that such configurations are globally stable and have transport levels comparable with classical magnetic diffusion. It also aims to apply this technology to the Direct Fusion Drive concept for spacecraft propulsion.

The Prairie View (PV) Rotamak is a plasma physics experiment at Prairie View A&M University. The experiment studies magnetic plasma confinement to support controlled nuclear fusion experiments. Specifically, the PV Rotamak can be used as either a spherical tokamak or a field-reversed configuration. Some time between 2015 and 2017, most personnel moved on to advanced career opportunities. In 2017, a Final Report to Department of Energy (DOE) was prepared and submitted by Dr. Saganti of PVAMU on the entire research work supported by DOE for 12 years.

Hartmut Zohm is a German plasma physicist who is known for his work on the ASDEX Upgrade machine. He received the 2014 John Dawson Award and the 2016 Hannes Alfvén Prize for successfully demonstrating that neoclassical tearing modes in tokamaks can be stabilized by electron cyclotron resonance heating, which is an important design consideration for pushing the performance limit of the ITER.

The Star Thrust Experiment (STX) was a plasma physics experiment at the University of Washington's Redmond Plasma Physics Laboratory which ran from 1999 to 2001. The experiment studied magnetic plasma confinement to support controlled nuclear fusion experiments. Specifically, STX pioneered the possibility of forming a Field-reversed configuration (FRC) by using a Rotating Magnetic Field (RMF).

Dmitri Dmitriyevich Ryutov is a Russian theoretical plasma physicist.

Jürgen Nührenberg is a German plasma physicist.

The Compact Ignition Tokamak (CIT) was a plasma physics experiment that was designed but not built. It was designed by an inter-organizational team in the USA led by Princeton Plasma Physics Laboratory. The experiment was designed to achieve a self-sustaining Thermonuclear fusion reaction (ignition) in a Tokamak with the minimum possible budget.

<span class="mw-page-title-main">Theta pinch</span> Fusion power reactor design

Theta-pinch, or θ-pinch, is a type of fusion power reactor design. The name refers to the configuration of currents used to confine the plasma fuel in the reactor, arranged to run around a cylinder in the direction normally denoted as theta in polar coordinate diagrams. The name was chosen to differentiate it from machines based on the pinch effect that arranged their currents running down the centre of the cylinder; these became known as z-pinch machines, referring to the Z-axis in cartesian coordinates.

References

  1. Hoffman, Alan L.; Guo, Houyang Y.; Slough, John T.; Tobin, Stephen J.; Schrank, Louis S.; Reass, William A.; Wurden, Glen A. (2002). "The TCS Rotating Magnetic Field FRC Current-Drive Experiment". Fusion Science and Technology. 41 (2): 92–106. doi:10.13182/fst02-a205. ISSN   1536-1055.
  2. Miller, K. E.; Grossnickle, J. A.; Brooks, R. D.; Deards, C. L.; DeHart, T. E.; Dellinger, M.; Fishburn, M. B.; Guo, H. Y.; Hansen, B. (2008). "The TCS Upgrade: Design, Construction, Conditioning, and Enhanced RMF FRC Performance". Fusion Science and Technology. 54 (4): 946–961. CiteSeerX   10.1.1.463.6715 . doi:10.13182/fst08-a1910. ISSN   1536-1055.
  3. Miller, Kenneth; Slough, John; Hoffman, Alan (1998). "An overview of the star thrust experiment". AIP Conference Proceedings. 420: 1352–1358. Bibcode:1998AIPC..420.1352M. CiteSeerX   10.1.1.397.7410 . doi:10.1063/1.54907.