Transplacental carcinogenesis is a series of genotypic and/or phenotypic changes in the cells of a fetus due to in utero exposure to carcinogens. Specifically, these changes are identified as malignant by virtue of their metastatic potential. [1]
The link between a pregnant mother and the fetus is such that "at all sites of direct cell-to-cell contact, maternal tissues (decidua and blood) are juxtaposed to extraembryonic cells (trophoblast).” [2] According to Cunningham, "after conception, a biomolecular communication system is established between the fetus and mother that is operative from before the time of nidation and continues through and beyond the time of parturition." [2] This communication system is essential to all facets of the pregnancy. "Physiological processes such as fetal nutrition and fetal development progress directly from embryonic/fetal tissue-directed modifications of maternal responses." [2] Notably, the placenta is the principal site of transfer between mother and fetus. A fetus is exposed via the placenta to all substances which are present in the peripheral circulation of the mother. Overall, the abundance of toxins contained within cigarette smoke that is inhaled by the mother exerts a direct impact by altering the placental and fetal cell proliferation and differentiation. The vital balance of cellular activity is disrupted. "The association of in utero exposure to such carcinogens and the subsequent development of cancer has been reported for all childhood cancers combined and particularly for childhood acute lymphoblastic leukemia, lymphoma, and brain tumors." [3]
Fetal cells are most sensitive to carcinogens during the early stages of gestation. [4] Notably, early in the gestational period, there is a high rate of cell division. Additionally, the cells exhibit undifferentiated characteristics. [4] These compounding factors illustrate the basis for this heightened cellular sensitivity to genotoxic agents. For example, it has been proven that during exposure nicotine binds to receptors of the fetal cells through which developmentally important signaling occurs in many developing organs and tissues. [5] Because the binding of these receptors is unanticipated by the regulated activity of the fetal cells it can be inferred that this is a disruption in the cellular process which can lead to detrimental effects such as the deregulation of vital signaling, expression, or repair. As indicated above, should this exposure occur during the early stages of gestation, the fetus will be more susceptible to such damage. In addition to receptor binding, it has also been proven that fetal tissues are suspected as "privileged targets of neoplastic changes" in light of the vast amount of cell proliferation and differentiation taking place. [6] Notably, tumors are arrived at via proliferating cells. In the event that proliferating cells become uncontrolled, by any measure, this mutated activity would certainly be characteristic of an increased risk in one's chances of developing cancer.
The endocrine system is a messenger system comprising feedback loops of the hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems. In humans, the major endocrine glands are the thyroid gland and the adrenal glands. The study of the endocrine system and its disorders is known as endocrinology.
The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate maternal and fetal circulations, and is an important endocrine organ producing hormones that regulate both maternal and fetal physiology during pregnancy. The placenta connects to the fetus via the umbilical cord, and on the opposite aspect to the maternal uterus in a species-dependent manner. In humans, a thin layer of maternal decidual (endometrial) tissue comes away with the placenta when it is expelled from the uterus following birth. Placentas are a defining characteristic of placental mammals, but are also found in marsupials and some non-mammals with varying levels of development.
Development of the human body is the process of growth to maturity. The process begins with fertilization, where an egg released from the ovary of a female is penetrated by a sperm cell from a male. The resulting zygote develops through mitosis and cell differentiation, and the resulting embryo then implants in the uterus, where the embryo continues development through a fetal stage until birth. Further growth and development continues after birth, and includes both physical and psychological development, influenced by genetic, hormonal, environmental and other factors. This continues throughout life: through childhood and adolescence into adulthood.
Methylcholanthrene is a highly carcinogenic polycyclic aromatic hydrocarbon produced by burning organic compounds at very high temperatures. Methylcholanthrene is also known as 3-methylcholanthrene, 20-methylcholanthrene or the IUPAC name 3-methyl-1,2-dyhydrobenzo[j]aceanthrylene. The short notation often used is 3-MC or MCA. This compound forms pale yellow solid crystals when crystallized from benzene and ether. It has a melting point around 180 °C and its boiling point is around 280 °C at a pressure of 80 mmHg. Methylcholanthrene is used in laboratory studies of chemical carcinogenesis. It is an alkylated derivative of benz[a]anthracene and has a similar UV spectrum. The most common isomer is 3-methylcholanthrene, although the methyl group can occur in other places.
Environmental toxicants and fetal development is the impact of different toxic substances from the environment on the development of the fetus. This article deals with potential adverse effects of environmental toxicants on the prenatal development of both the embryo or fetus, as well as pregnancy complications. The human embryo or fetus is relatively susceptible to impact from adverse conditions within the mother's environment. Substandard fetal conditions often cause various degrees of developmental delays, both physical and mental, for the growing baby. Although some variables do occur as a result of genetic conditions pertaining to the father, a great many are directly brought about from environmental toxins that the mother is exposed to.
Prenatal development includes the development of the embryo and of the foetus during a viviparous animal's gestation. Prenatal development starts with fertilization, in the germinal stage of embryonic development, and continues in fetal development until birth.
Microchimerism is the presence of a small number of cells in an individual that have originated from another individual and are therefore genetically distinct. This phenomenon may be related to certain types of autoimmune diseases although the responsible mechanisms are unclear. The term comes from the prefix "micro" + "chimerism" based on the hybrid Chimera of Greek mythology.
Intrauterine hypoxia occurs when the fetus is deprived of an adequate supply of oxygen. It may be due to a variety of reasons such as prolapse or occlusion of the umbilical cord, placental infarction, maternal diabetes and maternal smoking. Intrauterine growth restriction may cause or be the result of hypoxia. Intrauterine hypoxia can cause cellular damage that occurs within the central nervous system. This results in an increased mortality rate, including an increased risk of sudden infant death syndrome (SIDS). Oxygen deprivation in the fetus and neonate have been implicated as either a primary or as a contributing risk factor in numerous neurological and neuropsychiatric disorders such as epilepsy, attention deficit hyperactivity disorder, eating disorders and cerebral palsy.
Simpson–Golabi–Behmel syndrome (SGBS), is a rare inherited congenital disorder that can cause craniofacial, skeletal, cardiac, and renal abnormalities. The syndrome is inherited in an X-linked recessive fashion, where males express the phenotype and females usually do not. Females that possess one copy of the mutation are considered to be carriers of the syndrome and may express varying degrees of the phenotype.
Porcine parvovirus (PPV), a virus in the species Ungulate protoparvovirus 1 of genus Protoparvovirus in the virus family Parvoviridae, causes reproductive failure of swine characterized by embryonic and fetal infection and death, usually in the absence of outward maternal clinical signs. The disease develops mainly when seronegative dams are exposed oronasally to the virus anytime during about the first half of gestation, and conceptuses are subsequently infected transplacentally before they become immunocompetent. There is no definitive evidence that infection of swine other than during gestation is of any clinical or economic significance. The virus is ubiquitous among swine throughout the world and is enzootic in most herds that have been tested. Diagnostic surveys have indicated that PPV is the major infectious cause of embryonic and fetal death. In addition to its direct causal role in reproductive failure, PPV can potentiate the effects of porcine circovirus type II (PCV2) infection in the clinical course of postweaning multisystemic wasting syndrome (PMWS).
Peroxisome proliferator- activated receptor gamma, also known as the glitazone reverse insulin resistance receptor, or NR1C3 is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the PPARG gene.
The fetal membranes or extraembryonic membranes, are membranes associated with the developing fetus. The two chorioamniotic membranes are the amnion and the chorion, which make up the amniotic sac that surrounds and protects the fetus. The other fetal membranes are the allantois and the yolk sac.
Prenatal cocaine exposure (PCE), theorized in the 1970s, occurs when a pregnant woman uses cocaine and thereby exposes her fetus to the drug. Babies whose mothers used cocaine while pregnant supposedly have increased risk of several different health issues during growth and development.
Nutriepigenomics is the study of food nutrients and their effects on human health through epigenetic modifications. There is now considerable evidence that nutritional imbalances during gestation and lactation are linked to non-communicable diseases, such as obesity, cardiovascular disease, diabetes, hypertension, and cancer. If metabolic disturbances occur during critical time windows of development, the resulting epigenetic alterations can lead to permanent changes in tissue and organ structure or function and predispose individuals to disease.
Developmental toxicity is any structural or functional alteration, reversible or irreversible, which interferes with homeostasis, normal growth, differentiation, development or behavior, and is caused by environmental insult. It is the study of adverse effects on the development of the organism resulting from exposure to toxic agents before conception, during prenatal development, or post-natally until puberty. The substance that causes developmental toxicity from embryonic stage to birth is called teratogens. The effect of the developmental toxicants depends on the type of substance, dose and duration and time of exposure.
The fetal endocrine system is one of the first systems to develop during prenatal development.
The fetal origins hypothesis proposes that the period of gestation has significant impacts on the developmental health and wellbeing outcomes for an individual ranging from infancy to adulthood. The effects of fetal origin are marked by three characteristics: latency, wherein effects may not be apparent until much later in life; persistency, whereby conditions resulting from a fetal effect continue to exist for a given individual; and genetic programming, which describes the 'switching on' of a specific gene due to prenatal environment. Research in the areas of economics, epidemiology, and epigenetics offer support for the hypothesis.
Medical imaging in pregnancy may be indicated because of pregnancy complications, intercurrent diseases or routine prenatal care.
Epigenetic effects of smoking concerns how epigenetics contributes to the deletrious effects of smoking. Cigarette smoking has been found to affect global epigenetic regulation of transcription across tissue types. Studies have shown differences in epigenetic markers like DNA methylation, histone modifications and miRNA expression between smokers and non-smokers. Similar differences exist in children whose mothers smoked during pregnancy. These epigenetic effects are thought to be linked to many of negative health effects associated with smoking.
Fetal programming, also known as prenatal programming, is the theory that environmental cues experienced during fetal development play a seminal role in determining health trajectories across the lifespan.