Traversed edges per second

Last updated

The number of traversed edges per second (TEPS) that can be performed by a supercomputer cluster is a measure of both the communications capabilities and computational power of the machine. This is in contrast to the more standard metric of floating-point operations per second (FLOPS), which does not give any weight to the communication capabilities of the machine. The term first entered usage in 2010 with the advent of petascale computing, and has since been measured for many of the world's largest supercomputers. [1]

In this context, an edge is a connection between two vertices on a graph, and the traversal is the ability of the machine to communicate data between these two points. The standardized benchmark associated with Graph500, as of September, 2011, calls for executing graph generation and search algorithms on graphs as large as 1.1 Petabyte. [2]

The ability of an application to utilize a supercomputer cluster effectively depends not only on the raw speed of each processor, but also on the communication network. The importance of communication capability varies from application to application, but it is clear that the LINPACK benchmarks traditionally used for rating the FLOPS of supercomputers do not require the same communications capability as many scientific applications. [3] Therefore, alternative metrics that characterize the performance of a machine in a more holistic manner may be more relevant for many scientific applications, and may be desirable for making purchasing decisions. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Supercomputer</span> Type of extremely powerful computer

A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2017, there have existed supercomputers which can perform over 1017 FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS).

<span class="mw-page-title-main">FLOPS</span> Measure of computer performance

In computing, floating point operations per second is a measure of computer performance, useful in fields of scientific computations that require floating-point calculations. For such cases, it is a more accurate measure than measuring instructions per second.

<span class="mw-page-title-main">IBM Blue Gene</span> Series of supercomputers by IBM

Blue Gene is an IBM project aimed at designing supercomputers that can reach operating speeds in the petaFLOPS (PFLOPS) range, with low power consumption.

<span class="mw-page-title-main">High-performance computing</span> Computing with supercomputers and clusters

High-performance computing (HPC) uses supercomputers and computer clusters to solve advanced computation problems.

<span class="mw-page-title-main">ASCI Red</span> Supercomputer

ASCI Red was the first computer built under the Accelerated Strategic Computing Initiative (ASCI), the supercomputing initiative of the United States government created to help the maintenance of the United States nuclear arsenal after the 1992 moratorium on nuclear testing.

<span class="mw-page-title-main">Benchmark (computing)</span> Comparing the relative performance of computers by running the same program on all of them

In computing, a benchmark is the act of running a computer program, a set of programs, or other operations, in order to assess the relative performance of an object, normally by running a number of standard tests and trials against it.

Red Storm is a supercomputer architecture designed for the US Department of Energy’s National Nuclear Security Administration Advanced Simulation and Computing Program. Cray, Inc developed it based on the contracted architectural specifications provided by Sandia National Laboratories. The architecture was later commercially produced as the Cray XT3.

The Texas Advanced Computing Center (TACC) at the University of Texas at Austin, United States, is an advanced computing research center that provides comprehensive advanced computing resources and support services to researchers in Texas and across the USA. The mission of TACC is to enable discoveries that advance science and society through the application of advanced computing technologies. Specializing in high performance computing, scientific visualization, data analysis & storage systems, software, research & development and portal interfaces, TACC deploys and operates advanced computational infrastructure to enable computational research activities of faculty, staff, and students of UT Austin. TACC also provides consulting, technical documentation, and training to support researchers who use these resources. TACC staff members conduct research and development in applications and algorithms, computing systems design/architecture, and programming tools and environments.

<span class="mw-page-title-main">TOP500</span> Ranking of the 500 most powerful supercomputers

The TOP500 project ranks and details the 500 most powerful non-distributed computer systems in the world. The project was started in 1993 and publishes an updated list of the supercomputers twice a year. The first of these updates always coincides with the International Supercomputing Conference in June, and the second is presented at the ACM/IEEE Supercomputing Conference in November. The project aims to provide a reliable basis for tracking and detecting trends in high-performance computing and bases rankings on HPL, a portable implementation of the high-performance LINPACK benchmark written in Fortran for distributed-memory computers.

In computing, performance per watt is a measure of the energy efficiency of a particular computer architecture or computer hardware. Literally, it measures the rate of computation that can be delivered by a computer for every watt of power consumed. This rate is typically measured by performance on the LINPACK benchmark when trying to compare between computing systems: an example using this is the Green500 list of supercomputers. Performance per watt has been suggested to be a more sustainable measure of computing than Moore’s Law.

Petascale computing refers to computing systems capable of calculating at least 1015 floating point operations per second (1 petaFLOPS). Petascale computing allowed faster processing of traditional supercomputer applications. The first system to reach this milestone was the IBM Roadrunner in 2008. Petascale supercomputers are planned to be succeeded by exascale computers.

Exascale computing refers to computing systems capable of calculating at least "1018 IEEE 754 Double Precision (64-bit) operations (multiplications and/or additions) per second (exaFLOPS)"; it is a measure of supercomputer performance.

This list compares various amounts of computing power in instructions per second organized by order of magnitude in FLOPS.

Supercomputing in India has a history going back to the 1980s. The Government of India created an indigenous development programme as they had difficulty purchasing foreign supercomputers. As of November 2020 when ranking by number of supercomputer systems in the TOP500 list, India is ranked at number 111 in the world, with the PARAM Siddhi-AI being the fastest supercomputer in India.

The LINPACK Benchmarks are a measure of a system's floating-point computing power. Introduced by Jack Dongarra, they measure how fast a computer solves a dense n by n system of linear equations Ax = b, which is a common task in engineering.

<span class="mw-page-title-main">Titan (supercomputer)</span> American supercomputer

Titan or OLCF-3 was a supercomputer built by Cray at Oak Ridge National Laboratory for use in a variety of science projects. Titan was an upgrade of Jaguar, a previous supercomputer at Oak Ridge, that uses graphics processing units (GPUs) in addition to conventional central processing units (CPUs). Titan was the first such hybrid to perform over 10 petaFLOPS. The upgrade began in October 2011, commenced stability testing in October 2012 and it became available to researchers in early 2013. The initial cost of the upgrade was US$60 million, funded primarily by the United States Department of Energy.

The Graph500 is a rating of supercomputer systems, focused on data-intensive loads. The project was announced on International Supercomputing Conference in June 2010. The first list was published at the ACM/IEEE Supercomputing Conference in November 2010. New versions of the list are published twice a year. The main performance metric used to rank the supercomputers is GTEPS.

XK7 is a supercomputing platform, produced by Cray, launched on October 29, 2012. XK7 is the second platform from Cray to use a combination of central processing units ("CPUs") and graphical processing units ("GPUs") for computing; the hybrid architecture requires a different approach to programming to that of CPU-only supercomputers. Laboratories that host XK7 machines host workshops to train researchers in the new programming languages needed for XK7 machines. The platform is used in Titan, the world's second fastest supercomputer in the November 2013 list as ranked by the TOP500 organization. Other customers include the Swiss National Supercomputing Centre which has a 272 node machine and Blue Waters has a machine that has Cray XE6 and XK7 nodes that performs at approximately 1 petaFLOPS (1015 floating-point operations per second).

The HPCGbenchmark is a supercomputing benchmark test proposed by Michael Heroux from Sandia National Laboratories, and Jack Dongarra and Piotr Luszczek from the University of Tennessee. It is intended to model the data access patterns of real-world applications such as sparse matrix calculations, thus testing the effect of limitations of the memory subsystem and internal interconnect of the supercomputer on its computing performance. Because it is internally I/O bound, HPCG testing generally achieves only a tiny fraction of the peak FLOPS the computer could theoretically deliver.

<span class="mw-page-title-main">Fugaku (supercomputer)</span> Japanese supercomputer

Fugaku(Japanese: 富岳) is a petascale supercomputer at the Riken Center for Computational Science in Kobe, Japan. It started development in 2014 as the successor to the K computer and made its debut in 2020. It is named after an alternative name for Mount Fuji.

References

  1. "The Graph 500 list". Archived from the original on 2011-12-27.
  2. "Graph500 Benchmark Specification". Graph500. 15 September 2011. Retrieved 11 July 2013.
  3. Dongarra, Jack J. (2007), "The HPC Challenge Benchmark: A Candidate for Replacing Linpack in the Top500?", SPEC Benchmark Workshop (PDF)
  4. "Better Benchmarking for Supercomputers". 28 December 2010.