Tribochromism

Last updated

Tribochromism refers to a change in colour of a material caused by mechanical friction, similar to piezochromism, the change in colour of a material caused by pressure. It is a property of some materials and is often associated with thermochromism. [1] Tribochromism and piezochromism are often grouped together under the term mechanochromism. [2] [3]

Tribochromatic materials may be used in sensors when friction has to be detected. These materials generally change colour under mechanical stress conditions; the colour gradually fades once the stress is removed. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Friction</span> Force resisting sliding motion

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal.

<span class="mw-page-title-main">Piezoelectricity</span> Electric charge generated in certain solids due to mechanical stress

Piezoelectricity is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived from Ancient Greek πιέζω (piézō) 'to squeeze or press', and ἤλεκτρον (ḗlektron) 'amber'. The German form of the word (Piezoelektricität) was coined in 1881 by the German physicist Wilhelm Gottlieb Hankel; the English word was coined in 1883.

<span class="mw-page-title-main">Triboluminescence</span> Mechanical generation of light

Triboluminescence is a phenomenon in which light is generated when a material is mechanically pulled apart, ripped, scratched, crushed, or rubbed. The phenomenon is not fully understood but appears in most cases to be caused by the separation and reunification of static electric charges, see also triboelectric effect. The term comes from the Greek τρίβειν and the Latin lumen (light). Triboluminescence can be observed when breaking sugar crystals and peeling adhesive tapes.

Magnetostriction is a property of magnetic materials that causes them to change their shape or dimensions during the process of magnetization. The variation of materials' magnetization due to the applied magnetic field changes the magnetostrictive strain until reaching its saturation value, λ. The effect was first identified in 1842 by James Joule when observing a sample of iron.

<span class="mw-page-title-main">Young's modulus</span> Mechanical property that measures stiffness of a solid material

Young's modulus is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress applied to the object and the resulting axial strain in the linear elastic region of the material.

<span class="mw-page-title-main">Soft matter</span> Subfield of condensed matter physics

Soft matter or soft condensed matter is a subfield of condensed matter comprising a variety of physical systems that are deformed or structurally altered by thermal or mechanical stress of the magnitude of thermal fluctuations. These materials share an important common feature in that predominant physical behaviors occur at an energy scale comparable with room temperature thermal energy, and that entropy is considered the dominant factor. At these temperatures, quantum aspects are generally unimportant. Soft materials include liquids, colloids, polymers, foams, gels, granular materials, liquid crystals, flesh, and a number of biomaterials. When soft materials interact favorably with surfaces, they become squashed without an external compressive force. Pierre-Gilles de Gennes, who has been called the "founding father of soft matter," received the Nobel Prize in Physics in 1991 for discovering that methods developed for studying order phenomena in simple systems can be generalized to the more complex cases found in soft matter, in particular, to the behaviors of liquid crystals and polymers.

Magnetic shape memory alloys (MSMAs), also called ferromagnetic shape memory alloys (FSMA), are particular shape memory alloys which produce forces and deformations in response to a magnetic field. The thermal shape memory effect has been obtained in these materials, too.

<span class="mw-page-title-main">Nanoelectromechanical systems</span> Class of devices for nanoscale functionality

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include accelerometers and sensors to detect chemical substances in the air.

Smart materials, also called intelligent or responsive materials, are designed materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, moisture, electric or magnetic fields, light, temperature, pH, or chemical compounds. Smart materials are the basis of many applications, including sensors and actuators, or artificial muscles, particularly as electroactive polymers (EAPs).

Friction welding (FWR) is a solid-state welding and bonding process that generates heat through mechanical friction between workpieces in relative motion to one another. This process is used with the addition of a lateral force called "upset" to plastically displace and fuse the materials. Friction welding is a solid-state welding technique similar to forge welding, instead of a fusion welding process. Friction welding is used with metals and thermoplastics in a wide variety of aviation and automotive applications.

<span class="mw-page-title-main">Thermochromism</span> Property of substances to change colour due to a change in temperature

Thermochromism is the property of substances to change color due to a change in temperature. A mood ring is an excellent example of this phenomenon, but thermochromism also has more practical uses, such as baby bottles which change to a different color when cool enough to drink, or kettles which change color when water is at or near boiling point. Thermochromism is one of several types of chromism.

<span class="mw-page-title-main">Crystal twinning</span> Two separate crystals sharing some of the same crystal lattice points in a symmetrical manner

Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other. The surface along which the lattice points are shared in twinned crystals is called a composition surface or twin plane.

<span class="mw-page-title-main">Cottrell atmosphere</span> Concept in materials science

In materials science, the concept of the Cottrell atmosphere was introduced by A. H. Cottrell and B. A. Bilby in 1949 to explain how dislocations are pinned in some metals by boron, carbon, or nitrogen interstitials.

Fretting refers to wear and sometimes corrosion damage of loaded surfaces in contact while they encounter small oscillatory movements tangential to the surface. Fretting is caused by adhesion of contact surface asperities, which are subsequently broken again by the small movement. This breaking causes wear debris to be formed.

Hysteresivity derives from “hysteresis”, meaning “lag”. It is the tendency to react slowly to an outside force, or to not return completely to its original state. Whereas the area within a hysteresis loop represents energy dissipated to heat and is an extensive quantity with units of energy, the hysteresivity represents the fraction of the elastic energy that is lost to heat, and is an intensive property that is dimensionless.

<span class="mw-page-title-main">Piezochromism</span>

Piezochromism, from the Greek piezô "to squeeze, to press" and chromos "color", describes the tendency of certain materials to change color with the application of pressure. This effect is closely related to the electronic band gap change, which can be found in plastics, semiconductors and hydrocarbons. One simple molecule displaying this property is 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, also known as ROY owing to its red, orange and yellow crystalline forms. Individual yellow and pale orange versions transform reversibly to red at high pressure.

<span class="mw-page-title-main">Mercury(II) iodide</span> Chemical compound

Mercury(II) iodide is a chemical compound with the molecular formula HgI2. It is typically produced synthetically but can also be found in nature as the extremely rare mineral coccinite. Unlike the related mercury(II) chloride it is hardly soluble in water (<100 ppm).

In geology, a deformation mechanism is a process occurring at a microscopic scale that is responsible for changes in a material's internal structure, shape and volume. The process involves planar discontinuity and/or displacement of atoms from their original position within a crystal lattice structure. These small changes are preserved in various microstructures of materials such as rocks, metals and plastics, and can be studied in depth using optical or digital microscopy.

Mechanically stimulated gas emission (MSGE) is a complex phenomenon embracing various physical and chemical processes occurring on the surface and in the bulk of a solid under applied mechanical stress and resulting in emission of gases. MSGE is a part of a more general phenomenon of mechanically stimulated neutral emission. MSGE experiments are often performed in ultra-high vacuum.

<span class="mw-page-title-main">Grain boundary sliding</span> Material deformation mechanism

Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature and low strain rate and is intertwined with creep. Homologous temperature describes the operating temperature relative to the melting temperature of the material. There are mainly two types of grain boundary sliding: Rachinger sliding, and Lifshitz sliding. Grain boundary sliding usually occurs as a combination of both types of sliding. Boundary shape often determines the rate and extent of grain boundary sliding.

References

  1. Jobic, Stéphane; Serier-Brault, Hélène; Deniard, Philippe; Fritsch, Emmanuel; Bujoli-Doeuff, Martine; Ourry, Laurence (2017). "Thermochromism and Tribochromism". Institut des Matériaux de Nantes Jean Rouxel. Retrieved April 4, 2024.
  2. Ishii, Kazuyuki; Kato, Masako (2023), Kato, Masako; Ishii, Kazuyuki (eds.), "Background and Overview", Soft Crystals, Singapore: Springer Nature Singapore, pp. 3–12, doi:10.1007/978-981-99-0260-6_1, ISBN   978-981-99-0259-0 , retrieved 2024-04-04
  3. Seki, Tomohiro; Ito, Hajime (2016-03-18). "Molecular‐Level Understanding of Structural Changes of Organic Crystals Induced by Macroscopic Mechanical Stimulation". Chemistry – A European Journal. 22 (13): 4322–4329. doi:10.1002/chem.201504361. ISSN   0947-6539.
  4. Lee, Young-A; Eisenberg, Richard (2003-07-01). "Luminescence Tribochromism and Bright Emission in Gold(I) Thiouracilate Complexes". Journal of the American Chemical Society. 125 (26): 7778–7779. doi:10.1021/ja034560k. ISSN   0002-7863.