Tropical Atlantic Variability

Last updated

The Tropical Atlantic Variability (TAV) is influenced by internal interaction and external effects. TAV can be discussed in different time scales: seasonal (annual cycle) and interannual. tav can be discussed in different time scales:seasonal (annual cycle) and interannual.and external effects.

Contents

Annual cycle

Seasonal variability is the dominant time scale of TAV, which is due to the seasonal march of the Sun. [1] This seasonal variability is related to the movement of Intertropical Convergence Zone (ITCZ),which is the convergent zone of trade winds from south and north near the equator. It has strong vertical convection resulting to a redundant participation band and weak winds. The mean location of the ITCZ over the Atlantic Ocean is 5–10 degrees north of the geographical equator. [2] [3] All this asymmetric of ITCZ is the ultimate cause of the annual cycle in equatorial sea surface temperature (SST) in Atlantic by maintaining southerly cross-equatorial winds that intensify in boreal summer/fall and relax in boreal spring. [4] [5] From March to April, during which the temperature of the equator reaches maximum, winds are weakest and the sun shines directly over the equator. So, SST is uniformly warm near the equator, which makes the ITCZ really sensitive to even small disturbance of SST and explains the relaxation of cross-equator winds in spring. From July to September, during which the temperature of the equator reaches its minimum, ITCZ reaches its northernmost location, which explains the intensification of cross-equator winds. It can be seen that the process of cooling takes 3 months while that of warming takes 7 months, which are asymmetric. This seasonal asymmetry is due to influence of seasonal continental monsoon. Because of the narrow width of Atlantic, continental monsoon has a much more important influence on its variation compared to the wide Pacific Ocean, whose leading factor is air-sea interaction.

Interannual cycle

For interannual, there is one mode called Atlantic Niño, of which periodicity varies. During the Atlantic Nino event, eastern area of Atlantic will appear warm SST anomalies accompanying a relaxation of trade winds. [6] This mechanism, which is known as Bjerknes Feedback, [7] is similar to El Niño–Southern Oscillation (ENSO).

"On interannual and longer timescales, no single mode seems to dominate. Instead, several mechanisms are responsible for tropical Atlantic variability. On the equator, both observational and modeling studies indicate that there is a Bjerknes-type air–sea coupled mode arising from the interaction of the equatorial zonal SST gradient, ITCZ convection, zonal wind, and thermocline depth." [1]

Related Research Articles

Upwelling The replacement by deep water moving upwards of surface water driven offshore by wind

Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface, replacing the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water stimulates the growth and reproduction of primary producers such as phytoplankton. Due to the biomass of phytoplankton and presence of cool water in these regions, upwelling zones can be identified by cool sea surface temperatures (SST) and high concentrations of chlorophyll-a.

El Niño–Southern Oscillation Irregularly periodic variation in winds and sea surface temperatures over the tropical eastern Pacific Ocean

El Niño–Southern Oscillation (ENSO) is an irregular periodic variation in winds and sea surface temperatures over the tropical eastern Pacific Ocean, affecting the climate of much of the tropics and subtropics. The warming phase of the sea temperature is known as El Niño and the cooling phase as La Niña. The Southern Oscillation is the accompanying atmospheric component, coupled with the sea temperature change: El Niño is accompanied by high air surface pressure in the tropical western Pacific and La Niña with low air surface pressure there. The two periods last several months each and typically occur every few years with varying intensity per period.

Intertropical Convergence Zone Meteorological phenomenon

The Intertropical Convergence Zone, known by sailors as the doldrums or the calms because of its monotonous windless weather, is the area where the northeast and the southeast trade winds converge. It encircles Earth near the thermal equator though its specific position varies seasonally. When it lies near the geographic Equator, it is called the near-equatorial trough. Where the ITCZ is drawn into and merges with a monsoonial circulation, it is sometimes referred to as a monsoon trough, a usage that is more common in Australia and parts of Asia.

The Tropical Ocean Global Atmosphere program (TOGA) was a ten-year study (1985-1994) of the World Climate Research Programme (WCRP) aimed specifically at the prediction of climate phenomena on time scales of months to years.

Sea surface temperature Water temperature close to the oceans surface

Sea surface temperature (SST) is the water temperature close to the ocean's surface. The exact meaning of surface varies according to the measurement method used, but it is between 1 millimetre (0.04 in) and 20 metres (70 ft) below the sea surface. Air masses in the Earth's atmosphere are highly modified by sea surface temperatures within a short distance of the shore. Localized areas of heavy snow can form in bands downwind of warm water bodies within an otherwise cold air mass. Warm sea surface temperatures are known to be a cause of tropical cyclogenesis over the Earth's oceans. Tropical cyclones can also cause a cool wake, due to turbulent mixing of the upper 30 metres (100 ft) of the ocean. SST changes diurnally, like the air above it, but to a lesser degree. There is less SST variation on breezy days than on calm days. In addition, ocean currents such as the Atlantic Multidecadal Oscillation (AMO), can effect SST's on multi-decadal time scales, a major impact results from the global thermohaline circulation, which affects average SST significantly throughout most of the world's oceans.

Pacific decadal oscillation robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin

The Pacific decadal oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal time scales. There is evidence of reversals in the prevailing polarity of the oscillation occurring around 1925, 1947, and 1977; the last two reversals corresponded with dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures from Alaska to California.

Walker circulation Theorerical model of air flow in the atmosphere

The Walker circulation, also known as the Walker cell, is a conceptual model of the air flow in the tropics in the lower atmosphere (troposphere). According to this model, parcels of air follow a closed circulation in the zonal and vertical directions. This circulation, which is roughly consistent with observations, is caused by differences in heat distribution between ocean and land. It was discovered by Gilbert Walker. In addition to motions in the zonal and vertical direction the tropical atmosphere also has considerable motion in the meridional direction as part of, for example, the Hadley Circulation.

Madden–Julian oscillation Largest element of the intraseasonal variability in the tropical atmosphere

The Madden–Julian oscillation (MJO) is the largest element of the intraseasonal variability in the tropical atmosphere. It was discovered in 1971 by Roland Madden and Paul Julian of the American National Center for Atmospheric Research (NCAR). It is a large-scale coupling between atmospheric circulation and tropical deep atmospheric convection. Unlike a standing pattern like the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation is a traveling pattern that propagates eastward, at approximately 4 to 8 m/s, through the atmosphere above the warm parts of the Indian and Pacific oceans. This overall circulation pattern manifests itself most clearly as anomalous rainfall.

Equatorial Counter Current A shallow eastward flowing current found in the Atlantic, Indian, and Pacific Oceans

The Equatorial Counter Current is an eastward flowing, wind-driven current which extends to depths of 100-150m in the Atlantic, Indian, and Pacific Oceans. More often called the North Equatorial Countercurrent (NECC), this current flows west-to-east at about 3-10°N in the Atlantic, Indian Ocean and Pacific basins, between the North Equatorial Current (NEC) and the South Equatorial Current (SEC). The NECC is not to be confused with the Equatorial Undercurrent (EUC) that flows eastward along the equator at depths around 200m in the western Pacific rising to 100m in the eastern Pacific.

Mixed layer A layer in which active turbulence has homogenized some range of depths.

The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporation or sea ice formation which result in an increase in salinity. The atmospheric mixed layer is a zone having nearly constant potential temperature and specific humidity with height. The depth of the atmospheric mixed layer is known as the mixing height. Turbulence typically plays a role in the formation of fluid mixed layers.

Geography of South America Overview of the geography of South America

The geography of South America contains many diverse regions and climates. Geographically, South America is generally considered a continent forming the southern portion of the landmass of the Americas, south and east of the Colombia–Panama border by most authorities, or south and east of the Panama Canal by some. South and North America are sometimes considered a single continent or supercontinent, while constituent regions are infrequently considered subcontinents.

Tropical cyclogenesis Development and strengthening of a tropical cyclone in the atmosphere

Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which temperate cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment.

Indian Ocean Dipole

The Indian Ocean Dipole (IOD), also known as the Indian Niño, is an irregular oscillation of sea surface temperatures in which the western Indian Ocean becomes alternately warmer and then colder than the eastern part of the ocean.

Tropical instability waves A phenomenon in which the interface between areas of warm and cold sea surface temperatures near the equator form a regular pattern of westward-propagating waves

Tropical instability waves, often abbreviated TIW, are a phenomenon in which the interface between areas of warm and cold sea surface temperatures near the equator form a regular pattern of westward-propagating waves. These waves are often present in the Atlantic Ocean, extending westward from the African coast, but are more easily recognizable in the Pacific, extending westward from South America. They have an average period of about 30 days and wavelength of about 1100 kilometers, and are largest in amplitude between June and November. They are also largest during La Niña conditions, and may disappear when strong El Niño conditions are present.

Atlantic Equatorial mode quasiperiodic interannual climate pattern of the equatorial Atlantic Ocean

The Atlantic Equatorial Mode or Atlantic Niño is a quasiperiodic interannual climate pattern of the equatorial Atlantic Ocean. It is the dominant mode of year-to-year variability that results in alternating warming and cooling episodes of sea surface temperatures accompanied by changes in atmospheric circulation. The term Atlantic Niño comes from its close similarity with the El Niño-Southern Oscillation (ENSO) that dominates the tropical Pacific basin. For this reason, the Atlantic Niño is often called the little brother of El Niño. The Atlantic Niño usually appears in northern summer, and is not the same as the Atlantic Meridional (Interhemispheric) Mode that consists of a north-south dipole across the equator and operates more during northern spring. The equatorial warming and cooling events associated with the Atlantic Niño are known to be strongly related to rainfall variability over the surrounding continents, especially in West African countries bordering the Gulf of Guinea. Therefore, understanding of the Atlantic Niño has important implications for climate prediction in those regions. Although the Atlantic Niño is an intrinsic mode to the equatorial Atlantic, there may be a tenuous causal relationship between ENSO and the Atlantic Niño in some circumstances.

Barrier layer (oceanography) A layer of water separating the well-mixed surface layer from the thermocline

The Barrier layer in the ocean is a layer of water separating the well-mixed surface layer from the thermocline.

Subtropical Indian Ocean Dipole oscillation of sea surface temperatures in which the Indian Ocean southeast of Madagascar is warmer and then colder than the eastern part off Australia

The Subtropical Indian Ocean Dipole (SIOD) is featured by the oscillation of sea surface temperatures (SST) in which the southwest Indian Ocean i.e. south of Madagascar is warmer and then colder than the eastern part i.e. off Australia. It was first identified in the studies of the relationship between the SST anomaly and the south-central Africa rainfall anomaly; the existence of such a dipole was identified from both observational studies and model simulations .

The Tropical Atlantic SST Dipole refers to a cross-equatorial sea surface temperature (SST) pattern that appears dominant on decadal timescales. It has a period of about 12 years, with the SST anomalies manifesting their most pronounced features around 10–15 degrees of latitude off of the Equator. The term Tropical Atlantic SST dipole is only one of the characteristic names used to refer to this mode of variability; other definitions include the interhemispheric SST gradient or the Meridional Atlantic mode. This decadal-scale SST pattern constitutes one of the key features of SST variability in the Tropical Atlantic Ocean, with another one being the Atlantic Equatorial Mode or Atlantic Niño, which occurs in the zonal (east-west) direction at interannual timescales, with sea surface temperature and heat content anomalies being observed in the eastern equatorial basin. Its importance in climate dynamics and decadal-scale climate prediction is evident when investigating its impact on adjacent continental regions such as the Northeast Brazil, the Sahel as well as its influence on North Atlantic cyclogenesis.

There are a number of explanations of the asymmetry of the Intertropical Convergence Zone (ITCZ), known by sailors as the Doldrums.

Pacific Meridional Mode

Pacific Meridional Mode (PMM) is a climate mode in the North Pacific. In its positive state, it is characterized by the coupling of weaker trade winds in the northeast Pacific Ocean between Hawaii and Baja California with decreased evaporation over the ocean, thus increasing sea surface temperatures (SST); and the reverse during its negative state. This coupling develops during the winter months and spreads southwestward towards the equator and the central and western Pacific during spring, until it reaches the Intertropical Convergence Zone (ITCZ), which tends to shift north in response to a positive PMM.

References

  1. 1 2 "Tropical Atlantic Variability: Patterns, Mechanisms,and Impacts" (PDF). Geophysical Monograph. AGU. 2004.
  2. Hastenrath, S. (1991). "Climate dynamics of the tropics". 488 pp., Kluwer Academic, Boston, USA.
  3. Mitchell, T. P. & J. M. Wallace (1992). "The annual cycle in equatorial convection and sea surface temperature". Journal of Climate. 5 (10): 1140–1156. Bibcode:1992JCli....5.1140M. doi: 10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2 .
  4. 4Giese, B. S., and J. A. Carton (1994). "The seasonal cycle in a coupled ocean-atmosphere model". Journal of Climate. 7 (8): 1208–1217. doi: 10.1175/1520-0442(1994)007<1208:TSCICO>2.0.CO;2 . ISSN   1520-0442.CS1 maint: multiple names: authors list (link)
  5. Xie, S.-P. (1994). "On the genesis of the equatorial annual cycle" (PDF). J. Clim. pp. 2008–2013.
  6. Merle, J. "Annual and interannual variability of temperature in the eastern equatorial Atlantic Ocean – hypothesis of an Atlantic El Niño" Oceanol. Acta, 3, 209–220, 1980
  7. Bjerknes, J. (1969). "Atmospheric teleconnections from the equatorial Pacific" (PDF). Mon. Weather Rev., 97, 163–172.