Tunable resistive pulse sensing

Last updated

Tunable resistive pulse sensing (TRPS) is a single-particle technique used to measure the size, concentration and zeta potential of particles as they pass through a size-tunable nanopore. [1] [2]

Contents

The technique adapts the principle of resistive pulse sensing, which monitors current flow through an aperture, combined with the use of tunable nanopore technology, allowing the passage of ionic current and particles to be regulated by adjusting the pore size. [3] [4] The addition of the tunable nanopore allows for the measurement of a wider range of particle sizes and improves accuracy. [3] [4]

Tunable resistive pulse sensing (TRPS). Particles crossing a pore are detected as a transient change in the ionic current flow, which is denoted as a blockade event with its amplitude denoted as the blockade magnitude. TRPS Blockade.png
Tunable resistive pulse sensing (TRPS). Particles crossing a pore are detected as a transient change in the ionic current flow, which is denoted as a blockade event with its amplitude denoted as the blockade magnitude.

Technique

A polydisperse particle sample passing through the tunable nanopore. The size of the aperture is altered by increasing or decreasing the stretch placed upon the nanopore. Wiki Pore Image Simple.png
A polydisperse particle sample passing through the tunable nanopore. The size of the aperture is altered by increasing or decreasing the stretch placed upon the nanopore.

Particles crossing a nanopore are detected one at a time as a transient change in the ionic current flow, which is denoted as a blockade event with its amplitude denoted as the blockade magnitude. As blockade magnitude is proportional to particle size, accurate particle sizing can be achieved after calibration with a known standard. This standard is composed of particles of a known size and concentration. For TRPS, carboxylated polystyrene particles are often used. [5]

Nanopore-based detection allows particle-by-particle assessment of complex mixtures. [5] [6] [7] By selecting an appropriately sized nanopore and adjusting its stretch, the nanopore size can be optimized for particle size and improve measurement accuracy.  

Adjustments to nanopore stretch, in combination with a fine-control of pressure and voltage allow TRPS to determine sample concentration [8] and to accurately derive individual particle zeta potential [9] in addition to particle size information.

Applications

TRPS was developed by Izon Science Limited, producer of commercially available nanopore-based particle characterization systems. [10] Izon Science Limited currently sell one TRPS device, known as the "Exoid". Previous devices include the "qNano", the "qNano Gold" and the "qViron". These systems have been applied to measure a wide range of biological and synthetic particle types including viruses and nanoparticles. TRPS has been applied in both academic and industrial research fields, including:

Related Research Articles

<span class="mw-page-title-main">Nanopore</span>

A nanopore is a pore of nanometer size. It may, for example, be created by a pore-forming protein or as a hole in synthetic materials such as silicon or graphene.

<span class="mw-page-title-main">Nanopore sequencing</span> DNA / RNA sequencing technique

Nanopore sequencing is a third generation approach used in the sequencing of biopolymers — specifically, polynucleotides in the form of DNA or RNA.

<span class="mw-page-title-main">Nanomaterials</span> Materials whose granular size lies between 1 and 100 nm

Nanomaterials describe, in principle, materials of which a single unit is sized between 1 and 100 nm.

<span class="mw-page-title-main">Zeta potential</span> Electrokinetic potential in colloidal dispersions

Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

<span class="mw-page-title-main">Coulter counter</span> Device to count and size particles

A Coulter counter is an apparatus for counting and sizing particles suspended in electrolytes. The Coulter counter is the commercial term for the technique known as resistive pulse sensing or electrical zone sensing. The apparatus is based on the Coulter principle named after its inventor, Wallace H. Coulter.

Nanoparticle tracking analysis (NTA) is a method for visualizing and analyzing particles in liquids that relates the rate of Brownian motion to particle size. The rate of movement is related only to the viscosity and temperature of the liquid; it is not influenced by particle density or refractive index. NTA allows the determination of a size distribution profile of small particles with a diameter of approximately 10–1000 nanometers (nm) in liquid suspension.

<span class="mw-page-title-main">Exosome (vesicle)</span> Membrane-bound extracellular vesicles

Exosomes are membrane-bound extracellular vesicles (EVs) that are produced in the endosomal compartment of most eukaryotic cells. In multicellular organisms, exosomes and other EVs are found in biological fluids including saliva, blood, urine and cerebrospinal fluid. EVs have specialized functions in physiological processes, from coagulation and waste management to intercellular communication.

<span class="mw-page-title-main">Nanofluidics</span> Dynamics of fluids confined in nanoscale structures

Nanofluidics is the study of the behavior, manipulation, and control of fluids that are confined to structures of nanometer characteristic dimensions. Fluids confined in these structures exhibit physical behaviors not observed in larger structures, such as those of micrometer dimensions and above, because the characteristic physical scaling lengths of the fluid, very closely coincide with the dimensions of the nanostructure itself.

Green nanotechnology refers to the use of nanotechnology to enhance the environmental sustainability of processes producing negative externalities. It also refers to the use of the products of nanotechnology to enhance sustainability. It includes making green nano-products and using nano-products in support of sustainability.

<span class="mw-page-title-main">Silver nanoparticle</span> Ultrafine particles of silver between 1 nm and 100 nm in size

Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.

Virus quantification is counting or calculating the number of virus particles (virions) in a sample to determine the virus concentration. It is used in both research and development (R&D) in academic and commercial laboratories as well as in production situations where the quantity of virus at various steps is an important variable that must be monitored. For example, the production of virus-based vaccines, recombinant proteins using viral vectors, and viral antigens all require virus quantification to continually monitor and/or modify the process in order to optimize product quality and production yields and to respond to ever changing demands and applications. Other examples of specific instances where viruses need to be quantified include clone screening, multiplicity of infection (MOI) optimization, and adaptation of methods to cell culture.

Izon Science Limited is a nanotechnology company that develops and sells nano-scale particle analysis and isolation tools. Their main instruments are based on principles of size exclusion chromatography and tunable resistive pulse sensing. Izon’s size-exclusion chromatography columns and related solutions are also used by diagnostics companies focused on developing extracellular vesicle biomarkers.

<span class="mw-page-title-main">Ion track</span>

Ion tracks are damage-trails created by swift heavy ions penetrating through solids, which may be sufficiently-contiguous for chemical etching in a variety of crystalline, glassy, and/or polymeric solids. They are associated with cylindrical damage-regions several nanometers in diameter and can be studied by Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM), small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS) or gas permeation.

NanoSight Ltd is a company that designs and manufactures instruments for the scientific analysis of nanoparticles that are between approximately ten nanometers (nm) and one micron (μm) in diameter. The company was founded in 2003 by Bob Carr and John Knowles to further develop a technique Bob Carr had invented to visualize nanoparticles suspended in liquid. The company has since developed the technique of Nanoparticle Tracking Analysis (NTA), and they produce a series of instruments to count, size and visualize nanoparticles in liquid suspension using this patented technology.

Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are naturally released from almost all types of cells but, unlike a cell, cannot replicate. EVs range in diameter from near the size of the smallest physically possible unilamellar liposome to as large as 10 microns or more, although the vast majority of EVs are smaller than 200 nm. EVs can be divided according to size and synthesis route into exosomes, microvesicles and apoptotic bodies. They carry a cargo of proteins, nucleic acids, lipids, metabolites, and even organelles from the parent cell. EVs carry distinct proteo-transcriptomic signatures that are different from their cancer cell of origin. Most cells that have been studied to date are thought to release EVs, including some archaeal, bacterial, fungal, and plant cells that are surrounded by cell walls. A wide variety of EV subtypes have been proposed, defined variously by size, biogenesis pathway, cargo, cellular source, and function, leading to a historically heterogenous nomenclature including terms like exosomes and ectosomes.

<span class="mw-page-title-main">Gold nanoparticles in chemotherapy</span> Drug delivery technique using gold nanoparticles as vectors

Gold nanoparticles in chemotherapy and radiotherapy is the use of colloidal gold in therapeutic treatments, often for cancer or arthritis. Gold nanoparticle technology shows promise in the advancement of cancer treatments. Some of the properties that gold nanoparticles possess, such as small size, non-toxicity and non-immunogenicity make these molecules useful candidates for targeted drug delivery systems. With tumor-targeting delivery vectors becoming smaller, the ability to by-pass the natural barriers and obstacles of the body becomes more probable. To increase specificity and likelihood of drug delivery, tumor specific ligands may be grafted onto the particles along with the chemotherapeutic drug molecules, to allow these molecules to circulate throughout the tumor without being redistributed into the body.

<span class="mw-page-title-main">Resistive pulse sensing</span>

Resistive pulse sensing (RPS) is the generic, non-commercial term given for the well-developed technology used to detect, and measure the size of, individual particles in fluid. First invented by Wallace H. Coulter in 1953, the RPS technique is the basic principle behind the Coulter Principle, which is a trademark term. Resistive pulse sensing is also known as the electrical zone sensing technique, reflecting its fundamentally electrical nature, which distinguishes it from other particle sizing technologies such as the optically-based dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). An international standard has been developed for the use of the resistive pulse sensing technique by the International Organization for Standardization.

Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency. Recently, nanoparticles have aroused attention due to their potential application for effective drug delivery.

<span class="mw-page-title-main">Liposome extruder</span> Lab equipment

A liposome extruder is a device that prepares cell membranes, exosomes and also generates nanoscale liposome formulations. The liposome extruder employs the track-etched membrane to filter huge particles and achieve sterile filtration.

References

  1. Sowerby SJ, Broom MF, Petersen GB (April 2007). "Dynamically resizable nanometre-scale apertures for molecular sensing". Sensors and Actuators B: Chemical. 123 (1): 325–330. doi:10.1016/j.snb.2006.08.031.
  2. Vogel R, Willmott G, Kozak D, Roberts GS, Anderson W, Groenewegen L, Glossop B, Barnett A, Turner A, Trau M (May 2011). "Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor". Analytical Chemistry. 83 (9): 3499–506. doi:10.1021/ac200195n. PMID   21434639.
  3. 1 2 Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (December 2010). "Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy". Small. Weinheim an Der Bergstrasse, Germany. 6 (23): 2653–8. doi:10.1002/smll.201001129. PMID   20979105.
  4. 1 2 Willmott GR, Vogel R, Yu SS, Groenewegen LG, Roberts GS, Kozak D, Anderson W, Trau M (November 2010). "Use of tunable nanopore blockade rates to investigate colloidal dispersions". Journal of Physics: Condensed Matter. 22 (45): 454116. arXiv: 1005.4255 . Bibcode:2010JPCM...22S4116W. doi:10.1088/0953-8984/22/45/454116. PMID   21339603. S2CID   11162451.
  5. 1 2 3 Vogel R, Pal AK, Jambhrunkar S, Patel P, Thakur SS, Reátegui E, et al. (December 2017). "High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing". Scientific Reports. 7 (1): 17479. Bibcode:2017NatSR...717479V. doi:10.1038/s41598-017-14981-x. PMC   5727177 . PMID   29234015.
  6. Vogel R, Savage J, Muzard J, Camera GD, Vella G, Law A, et al. (January 2021). "Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?". Journal of Extracellular Vesicles. 10 (3): e12052. doi:10.1002/jev2.12052. PMC   7804049 . PMID   33473263.
  7. 1 2 Vogel R, Coumans FA, Maltesen RG, Böing AN, Bonnington KE, Broekman ML, et al. (January 2016). "A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing". Journal of Extracellular Vesicles. 5 (1): 31242. doi:10.3402/jev.v5.31242. PMC   5040823 . PMID   27680301.
  8. Willmott GR, Samuel SC, Vogel R (February 2010). Pressure dependence of particle transport through resizable nanopores. 2010 International Conference on Nanoscience and Nanotechnology. IEEE. pp. 128–131. doi:10.1109/ICONN.2010.6045207.
  9. Vogel R, Anderson W, Eldridge J, Glossop B, Willmott G (April 2012). "A variable pressure method for characterizing nanoparticle surface charge using pore sensors". Analytical Chemistry. 84 (7): 3125–31. doi:10.1021/ac2030915. PMID   22369672.
  10. "IZON launch world's first commercial nanopore platform". PRLog. June 23, 2009.