Turbo equalizer

Last updated

In digital communications, a turbo equalizer is a type of receiver used to receive a message corrupted by a communication channel with intersymbol interference (ISI). It approaches the performance of a maximum a posteriori (MAP) receiver via iterative message passing between a soft-in soft-out (SISO) equalizer and a SISO decoder. [1] It is related to turbo codes in that a turbo equalizer may be considered a type of iterative decoder if the channel is viewed as a non-redundant convolutional code. The turbo equalizer is different from classic a turbo-like code, however, in that the 'channel code' adds no redundancy and therefore can only be used to remove non-gaussian noise.

Contents

History

Turbo codes were invented by Claude Berrou in 1990–1991. In 1993, turbo codes were introduced publicly via a paper listing authors Berrou, Glavieux, and Thitimajshima. [2] In 1995 a novel extension of the turbo principle was applied to an equalizer by Douillard, Jézéquel, and Berrou. [3] In particular, they formulated the ISI receiver problem as a turbo code decoding problem, where the channel is thought of as a rate 1 convolutional code and the error correction coding is the second code. In 1997, Glavieux, Laot, and Labat demonstrated that a linear equalizer could be used in a turbo equalizer framework. [4] This discovery made turbo equalization computationally efficient enough to be applied to a wide range of applications. [5]

Overview

Standard communication system overview

Before discussing turbo equalizers, it is necessary to understand the basic receiver in the context of a communication system. This is the topic of this section.

At the transmitter, information bits are encoded. Encoding adds redundancy by mapping the information bits to a longer bit vector – the code bit vector . The encoded bits are then interleaved. Interleaving permutes the order of the code bits resulting in bits . The main reason for doing this is to insulate the information bits from bursty noise. Next, the symbol mapper maps the bits into complex symbols . These digital symbols are then converted into analog symbols with a D/A converter. Typically the signal is then up-converted to pass band frequencies by mixing it with a carrier signal. This is a necessary step for complex symbols. The signal is then ready to be transmitted through the channel.

At the receiver, the operations performed by the transmitter are reversed to recover , an estimate of the information bits. The down-converter mixes the signal back down to baseband. The A/D converter then samples the analog signal, making it digital. At this point, is recovered. The signal is what would be received if were transmitted through the digital baseband equivalent of the channel plus noise. The signal is then equalized. The equalizer attempts to unravel the ISI in the received signal to recover the transmitted symbols. It then outputs the bits associated with those symbols. The vector may represent hard decisions on the bits or soft decisions. If the equalizer makes soft decisions, it outputs information relating to the probability of the bit being a 0 or a 1. If the equalizer makes hard decisions on the bits, it quantizes the soft bit decisions and outputs either a 0 or a 1. Next, the signal is deinterleaved which is a simple permutation transformation that undoes the transformation the interleaver executed. Finally, the bits are decoded by the decoder. The decoder estimates from .

A diagram of the communication system is shown below. In this diagram, the channel is the equivalent baseband channel, meaning that it encompasses the D/A, the up converter, the channel, the down converter, and the A/D.

COMMblockdiagram.png

Turbo equalizer overview

The block diagram of a communication system employing a turbo equalizer is shown below. The turbo equalizer encompasses the equalizer, the decoder, and the blocks in between.

TEQUdiagram.png

The difference between a turbo equalizer and a standard equalizer is the feedback loop from the decoder to the equalizer. Due to the structure of the code, the decoder not only estimates the information bits , but it also discovers new information about the coded bits . The decoder is therefore able to output extrinsic information, about the likelihood that a certain code bit stream was transmitted. Extrinsic information is new information that is not derived from information input to the block. This extrinsic information is then mapped back into information about the transmitted symbols for use in the equalizer. These extrinsic symbol likelihoods, , are fed into the equalizer as a priori symbol probabilities. The equalizer uses this a priori information as well as the input signal to estimate extrinsic probability information about the transmitted symbols. The a priori information fed to the equalizer is initialized to 0, meaning that the initial estimate made by the turbo equalizer is identical to the estimate made by the standard receiver. The information is then mapped back into information about for use by the decoder. The turbo equalizer repeats this iterative process until a stopping criterion is reached.

Turbo equalization in practical systems

In practical turbo equalization implementations, an additional issue need to be considered. The channel state information (CSI) that the equalizer operates on comes from some channel estimation technique, and hence un-reliable. Firstly, in order to improve the reliability of the CSI, it is desirable to include the channel estimation block also into the turbo equalization loop, and parse soft or hard decision directed channel estimation within each turbo equalization iteration. [6] [7] Secondly, incorporating the presence of CSI uncertainty into the turbo equalizer design leads to a more robust approach with significant performance gains in practical scenarios. [8] [9]

Related Research Articles

<span class="mw-page-title-main">Orthogonal frequency-division multiplexing</span> Method of encoding digital data on multiple carrier frequencies

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

In telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.

A satellite modem or satmodem is a modem used to establish data transfers using a communications satellite as a relay. A satellite modem's main function is to transform an input bitstream to a radio signal and vice versa.

The Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum a posteriori probability estimate of the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events. This is done especially in the context of Markov information sources and hidden Markov models (HMM).

Channel capacity, in electrical engineering, computer science, and information theory, is the theoretical maximum rate at which information can be reliably transmitted over a communication channel.

<span class="mw-page-title-main">Coding theory</span> Study of the properties of codes and their fitness

Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data.

In information theory, turbo codes are a class of high-performance forward error correction (FEC) codes developed around 1990–91, but first published in 1993. They were the first practical codes to closely approach the maximum channel capacity or Shannon limit, a theoretical maximum for the code rate at which reliable communication is still possible given a specific noise level. Turbo codes are used in 3G/4G mobile communications and in satellite communications as well as other applications where designers seek to achieve reliable information transfer over bandwidth- or latency-constrained communication links in the presence of data-corrupting noise. Turbo codes compete with low-density parity-check (LDPC) codes, which provide similar performance.

In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph. LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum for a symmetric memoryless channel. The noise threshold defines an upper bound for the channel noise, up to which the probability of lost information can be made as small as desired. Using iterative belief propagation techniques, LDPC codes can be decoded in time linear in their block length.

Claude Berrou is a French professor in electrical engineering at École Nationale Supérieure des Télécommunications de Bretagne, now IMT Atlantique. He is the sole inventor of a groundbreaking quasi-optimal error-correcting coding scheme called turbo codes as evidenced by the sole inventorship credit given on the fundamental patent for turbo codes. The original patent filing for turbo codes issued in the US as US Patent 5,446,747.

Space–time block coding is a technique used in wireless communications to transmit multiple copies of a data stream across a number of antennas and to exploit the various received versions of the data to improve the reliability of data transfer. The fact that the transmitted signal must traverse a potentially difficult environment with scattering, reflection, refraction and so on and may then be further corrupted by thermal noise in the receiver means that some of the received copies of the data may be closer to the original signal than others. This redundancy results in a higher chance of being able to use one or more of the received copies to correctly decode the received signal. In fact, space–time coding combines all the copies of the received signal in an optimal way to extract as much information from each of them as possible.

In computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations.

In coding theory, the repetition code is one of the most basic linear error-correcting codes. In order to transmit a message over a noisy channel that may corrupt the transmission in a few places, the idea of the repetition code is to just repeat the message several times. The hope is that the channel corrupts only a minority of these repetitions. This way the receiver will notice that a transmission error occurred since the received data stream is not the repetition of a single message, and moreover, the receiver can recover the original message by looking at the received message in the data stream that occurs most often.

In information theory, the noisy-channel coding theorem, establishes that for any given degree of noise contamination of a communication channel, it is possible to communicate discrete data nearly error-free up to a computable maximum rate through the channel. This result was presented by Claude Shannon in 1948 and was based in part on earlier work and ideas of Harry Nyquist and Ralph Hartley.

In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels.

Single-carrier FDMA (SC-FDMA) is a frequency-division multiple access scheme. Originally known as Carrier Interferometry, it is also called linearly precoded OFDMA (LP-OFDMA). Like other multiple access schemes, it deals with the assignment of multiple users to a shared communication resource. SC-FDMA can be interpreted as a linearly precoded OFDMA scheme, in the sense that it has an additional DFT processing step preceding the conventional OFDMA processing.

The BCJR algorithm is an algorithm for maximum a posteriori decoding of error correcting codes defined on trellises. The algorithm is named after its inventors: Bahl, Cocke, Jelinek and Raviv. This algorithm is critical to modern iteratively-decoded error-correcting codes, including turbo codes and low-density parity-check codes.

Precoding is a generalization of beamforming to support multi-stream transmission in multi-antenna wireless communications. In conventional single-stream beamforming, the same signal is emitted from each of the transmit antennas with appropriate weighting such that the signal power is maximized at the receiver output. When the receiver has multiple antennas, single-stream beamforming cannot simultaneously maximize the signal level at all of the receive antennas. In order to maximize the throughput in multiple receive antenna systems, multi-stream transmission is generally required.

In coding theory, concatenated codes form a class of error-correcting codes that are derived by combining an inner code and an outer code. They were conceived in 1966 by Dave Forney as a solution to the problem of finding a code that has both exponentially decreasing error probability with increasing block length and polynomial-time decoding complexity. Concatenated codes became widely used in space communications in the 1970s.

In information theory, the interference channel is the basic model used to analyze the effect of interference in communication channels. The model consists of two pairs of users communicating through a shared channel. The problem of interference between two mobile users in close proximity or crosstalk between two parallel landlines are two examples where this model is applicable.

Spatial modulation is a technique that enables modulation over space, across different antennas (radio) at a transmitter. Unlike multiple-input and multiple-output (MIMO) wireless, in spatial modulation, only a single antenna among all transmitting antennas is active and transmitting, while all other remaining transmitting antennas sit idle. The duty of the receiver is: to estimate the active antenna index at the transmitter and to decode the symbol sent by the transmitting antenna.

References

  1. Koetter, R.; Singer, A.C.; Tuchler, M. (2004). "Turbo equalization". IEEE Signal Processing Magazine. 21 (1): 67–80. Bibcode:2004ISPM...21...67K. doi:10.1109/MSP.2004.1267050. S2CID   14036611.
  2. Berrou, Claude; Glavieux, Alain; Thitimajshima, Punya (1993). "Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1". Proceedings of ICC '93 - IEEE International Conference on Communications. Vol. 2. pp. 1064–1070. doi:10.1109/ICC.1993.397441. ISBN   0-7803-0950-2. S2CID   17770377.
  3. Douillard, Catherine; Jézéquel, Michel; Berrou, Claude (1995). "Iterative Correction of Intersymbol-Interference: Turbo-Equalization" (PDF). European Transactions on Telecommunications. 6 (5): 507. doi:10.1002/ett.4460060506.
  4. Glavieux, A.; Laot, C. & Labat, J. (1997). "Turbo equalization over a frequency selective channel". Proc. Int. Symp. Turbo Codes, Brest, France. pp. 96–102. CiteSeerX   10.1.1.143.6389 .
  5. Tüchler, M.; Koetter, R. & Singer, A.C. (2002). "Turbo Equalization: Principles and New Results". IEEE Transactions on Communications. 50 (5): 754–767. CiteSeerX   10.1.1.16.8619 . doi:10.1109/tcomm.2002.1006557.
  6. Nefedov, N.; Pukkila, M.; Visoz, R.; Berthet, A.O. (2003). "Iterative data detection and channel estimation for advanced TDMA systems". IEEE Transactions on Communications. 51 (2): 141. doi:10.1109/TCOMM.2003.809218.
  7. Park, S.Y.; Kang, C.G. (2004). "Complexity-Reduced Iterative MAP Receiver for Interference Suppression in OFDM-Based Spatial Multiplexing Systems". IEEE Transactions on Vehicular Technology. 53 (5): 1316. doi:10.1109/TVT.2004.832383. S2CID   32816930.
  8. Nisar, Muhammad Danish; Utschick, Wolfgang (2011). "Minimax Robust a Priori Information Aware Channel Equalization". IEEE Transactions on Signal Processing. 59 (4): 1734. Bibcode:2011ITSP...59.1734N. doi:10.1109/TSP.2010.2101068. S2CID   15803557.
  9. Kalantarova, Nargiz; Kozat, Suleyman S.; Erdogan, Alper T. (2011). "Robust turbo equalization under channel uncertainties". 2011 IEEE Radio and Wireless Symposium. p. 359. doi:10.1109/RWS.2011.5725469. ISBN   978-1-4244-7687-9.

Further reading

See also