Turbomeca Makila

Last updated
Makila
Turbomeca Makila cutaway.jpg
Cutaway view of a Turbomeca Makila
Type Free-turbine turboshaft
National originFrance
Manufacturer Turbomeca/SAFRAN
First run1976
Major applications Aérospatiale Super Puma
Denel Rooivalk
Number built2,200

The Turbomeca Makila is a family of French turboshaft engines for helicopter use, first run in 1976 and flown in 1977. [1]

Contents

Typical power output is around 1,300 kW (1,700 hp). [2] As of 2012, some 2,200 had been built. [2]

Applications

Variants

[4]

Makila 1A 1240 kW (1662shp)
Makila 1A1 1357 kW (1820shp)
Makila 1A2 1376 kW (1845shp)
Makila 1A4
Makila 2A 1801 kW (2415shp)
Makila 2A1
Makila 2B

Specifications (Makila 2A)

Data fromTurbomeca. [5] [6]

General characteristics

Components

Performance

See also

Related lists

Related Research Articles

<span class="mw-page-title-main">Eurocopter AS532 Cougar</span> Utility helicopter

The Eurocopter AS532 Cougar is a twin-engine, medium-weight, multipurpose helicopter developed by Eurocopter. The AS532 is a development and upgrade of the Aérospatiale SA 330 Puma in its militarized form. Its civilian counterpart is the Eurocopter AS332 Super Puma. The AS532 has been further developed as the Eurocopter EC725.

<span class="mw-page-title-main">Safran Helicopter Engines</span> French company producing gasturbine turbo shaft engines

Safran Helicopter Engines, previously known as Turbomeca, is a French manufacturer of low- and medium-power gas turbine turboshaft engines for helicopters. The company also produces gas turbine engines for aircraft and missiles, as well as turbines for land, industrial and marine applications.

<span class="mw-page-title-main">Rolls-Royce Turbomeca RTM322</span> 1980s British/French turboshaft engine

The Rolls-Royce Turbomeca RTM322 is a turboshaft engine produced by Safran Helicopter Engines. It was originally conceived and manufactured by Rolls-Royce Turbomeca Limited, a joint venture between Rolls-Royce plc and Turbomeca. The engine was designed to suit a wide range of military and commercial helicopter designs. The RTM322 can also be employed in maritime and industrial applications.

<span class="mw-page-title-main">MTR MTR390</span>

The MTU Turbomeca Rolls-Royce MTR390 is a turboshaft developed for light helicopter applications by MTU Turbomeca Rolls-Royce (MTR). The engine is designed to power helicopters in the weight range of 5-7 tonnes in both single and twin engine configurations. So far the only application is the Eurocopter Tiger. Test runs of the MTR390 began in 1989 and the first test flight was performed in 1991. The MTR390 received military certification in May 1996 and civil approval in June 1997.

<span class="mw-page-title-main">Turboshaft</span> Gas turbine used to spin a shaft

A turboshaft engine is a form of gas turbine that is optimized to produce shaft horsepower rather than jet thrust. In concept, turboshaft engines are very similar to turbojets, with additional turbine expansion to extract heat energy from the exhaust and convert it into output shaft power. They are even more similar to turboprops, with only minor differences, and a single engine is often sold in both forms.

The Turbomeca TM 333 is a turboshaft engine manufactured by French company Turbomeca and designed for helicopters weighing 4-5 tonnes. It first ran in August 1981 and was introduced commercially in the mid-1980s. It was the first Turbomeca engine to use a single stage turbine, making it more compact than its predecessors. In its original design, the engine was rated at 750 continuous horsepower, though it was designed to allow for future power increases, and the later 2B2 variant made 1,100 horsepower.

<span class="mw-page-title-main">Bristol Siddeley Nimbus</span> 1950s British turboshaft aircraft engine

The Bristol Siddeley Nimbus, later known as the Rolls-Royce Nimbus, was a British turboshaft engine developed under license by Blackburn Aircraft Ltd. from the Turbomeca Turmo in the late 1950s. It was used on the Westland Scout and Westland Wasp helicopters.

<span class="mw-page-title-main">Rolls-Royce Gem</span> 1970s British turboshaft aircraft engine

The Rolls-Royce Gem is a turboshaft engine developed specifically for the Westland Lynx helicopter in the 1970s. The design started off at de Havilland Engine division and passed to Bristol Siddeley as the BS.360. Rolls-Royce bought out Bristol Siddeley in 1966 and after it dropped the Bristol Siddeley identity the engine became the RS.360.

<span class="mw-page-title-main">Allison Model 250</span> Turboshaft aircraft engine

The Allison Model 250, now known as the Rolls-Royce M250, is a highly successful turboshaft engine family, originally developed by the Allison Engine Company in the early 1960s. The Model 250 has been produced by Rolls-Royce since it acquired Allison in 1995.

<span class="mw-page-title-main">Turbomeca Astazou</span>

The Turbomeca Astazou is a highly successful series of turboprop and turboshaft engines, first run in 1957. The original version weighed 110 kg (243 lb) and developed 240 kW (320 shp) at 40,000 rpm. It was admitted for aviation service on May 29, 1961, after a 150-hour test run. The main developing engineer was G. Sporer. It was named after two summits of the Pyrenees.

<span class="mw-page-title-main">Turbomeca Arriel</span> French turboshaft engine

The Turbomeca Arriel is a series of French turboshaft engines that first ran in 1974. Delivering 650 to 1,000 hp, over 12,000 Arriel engines have been produced from 1978 to 2018, logging more than 50 million flight hours for 40 helicopter applications. In June 2018, 1,000 Arriel 2D were in service, powering H125 and H130 single-engine helicopters, having logged one million flight hours since 2011. After endurance tests and fleet data analysis, their TBO increased by 25% to 5,000 hours and mandatory inspection rose to 15 years with no hourly limit, lowering maintenance costs.

<span class="mw-page-title-main">Turbomeca Arrius</span>

The Turbomeca Arrius is one of a family of turboshaft engines for helicopter use, first produced in 1981. As of 2012, some 2,700 units had been sold. Power ranges between 357 kW and 530 kW for different versions. Following Turbomeca tradition, the Arrius was named after a Pyrenean peak, located in the Ossau Valley near Pau.

<span class="mw-page-title-main">Turbomeca Artouste</span> Early French turboshaft engine

The Turbomeca Artouste is an early French turboshaft engine, first run in 1947. Originally conceived as an auxiliary power unit (APU), it was soon adapted to aircraft propulsion, and found a niche as a powerplant for turboshaft-driven helicopters in the 1950s. Artoustes were licence-built by Bristol Siddeley in the UK, Hindustan Aeronautics Limited in India, and developed by Continental CAE in the US as the Continental T51. Two major versions of the Artouste were produced. The Artouste II family, mainly used in the Aérospatiale Alouette II helicopter, had a one-stage centrifugal compressor and a two-stage turbine, with gearbox-limited power of 300 kW (400 hp). The Artouste III family, mainly used in Aérospatiale's Alouette III and Lama helicopters, had a two-stage axial-centrifugal compressor and a three-stage turbine, with gearbox-limited power of 420–440 kW (560–590 hp).

<span class="mw-page-title-main">Turbomeca Turmo</span>

The Turbomeca Turmo is a family of French turboshaft engines manufacturered for helicopter use. Developed from the earlier Turbomeca Artouste, later versions delivered up to 1,300 kW (1,700 shp). A turboprop version was developed for use with the Bréguet 941 transport aircraft.

<span class="mw-page-title-main">General Electric T58</span> American turboshaft engine for helicopters

The General Electric T58 is an American turboshaft engine developed for helicopter use. First run in 1955, it remained in production until 1984, by which time some 6,300 units had been built. On July 1, 1959, it became the first turbine engine to gain FAA certification for civil helicopter use. The engine was license-built and further developed by de Havilland in the UK as the Gnome, in the West Germany by Klöckner-Humboldt-Deutz, and also manufactured by Alfa Romeo and the IHI Corporation.

<span class="mw-page-title-main">General Electric T64</span> Turboshaft engine

The General Electric T64 is a free-turbine turboshaft engine that was originally developed for use on helicopters, but which was later used on fixed-wing aircraft as well. General Electric introduced the engine in 1964. The original engine design included technical innovations such as corrosion resistant and high-temperature coatings. The engine features a high overall pressure ratio, yielding a low specific fuel consumption for its time. Although the compressor is all-axial, like the earlier General Electric T58, the power turbine shaft is coaxial with the HP shaft and delivers power to the front of the engine, not rearwards. Fourteen compressor stages are required to deliver the required overall pressure ratio. Compressor handling is facilitated by 4 rows of variable stators. Unlike the T58, the power turbine has 2 stages.

<span class="mw-page-title-main">Safran Ardiden</span> Turboshaft engine

The Safran Ardiden is a 1,400–2,000 hp (1,000–1,500 kW) turboshaft designed and produced by Safran Helicopter Engines for 5–8 t (11,000–18,000 lb) single and twin-engine helicopters. Launched in 2003 as a more powerful TM 333, it first ran in 2005 and was introduced in 2007. The Ardiden 1 Shakti powers the Indian HAL Dhruv, Light Combat Helicopter and Light Utility Helicopter while the more powerful Ardiden 3 powers the Avicopter AC352 and Kamov Ka-62.

<span class="mw-page-title-main">Boeing T50</span>

The Boeing T50 was a small turboshaft engine produced by Boeing. It was the first turboshaft engine to ever power a helicopter: a modified Kaman K-225 in 1951. Based on Boeing's earlier Model 500 gas generator, the T50's main application was in the QH-50 DASH helicopter drone of the 1950s. An up-rated version designated Model 550 was developed to power the QH-50D and was given the military designation T50-BO-12.

<span class="mw-page-title-main">Klimov TV7-117</span> 1990s Russian turboprop aircraft engine

The Klimov TV7-117 is a Russian turboprop engine certified in 1997 to power the Ilyushin Il-114 regional commuter aircraft. The new engine features enhanced reliability, fuel economy and greater service life compared to its predecessors produced in the former Soviet Union. The engine has a modular design. The nine modules can be replaced in the field, which dramatically reduces costs and accelerates repair and maintenance. The engine has an electronic-hydromechanical control system.

The Safran Arrano is a turboshaft engine for two-to-three ton single-engine and four-to-six ton twin-engine helicopters, developed by Safran Helicopter Engines, outputting 1,100 to 1,300 hp.

References

Notes
  1. Flight International - Turbomeca Makila www.flightglobal.com Retrieved: 3 January 2012
  2. 1 2 SAFRAN - Turbomeca Makila Archived 2012-01-20 at the Wayback Machine www.turbomeca.com Retrieved: 3 January 2012
  3. "IAR S.A. Annual Report" (PDF). bvb.ro. Bucharest Stock Exchange. 29 April 2021. p. 2.
  4. "TYPE-CERTIFICATE DATA SHEET No. E. 072 for MAKILA 1 series engines" (PDF). Retrieved 2024-02-11.
  5. Turbomeca Makila - Manufacturer's data sheet. Archived 2012-04-27 at the Wayback Machine www.turbomeca.com Retrieved: 3 January 2012
  6. @SafranHCEngines (May 5, 2017). "This our #Makila engine powering the @AirbusHC #H225 a safe reliable and combat-proven engine for operators flying…" (Tweet) via Twitter.
Bibliography