In graph theory, a Tutte path is a path within a graph such that every connected component that remains after removing the vertices of from is connected back to at a limited number of vertices.
The precise definition relies on the following terms: [1]
A Tutte path then is a path in such that every -bridge that remains after removing the vertices of from has at most three points of attachment to the path . Furthermore, if a -bridge contains edges from the outer face of the graph (in the context of planar graphs), it is restricted to having at most two attachment points. [2]
A key motivation for the study of Tutte paths is their close relationship to Hamiltonian paths and cycles, paths and cycles in a graph that visit every vertex exactly once. A Tutte path is a relaxation of this concept; it does not require that all vertices be on the path. However, the constraints on the bridges provide strong structural information about the graph which can then be used to find a Hamiltonian path or cycle, especially in planar graphs.