Tutton's salts are a family of salts with the formula M2M'(SO4)2(H2O)6 (sulfates) or M2M'(SeO4)2(H2O)6 (selenates). These materials are double salts, which means that they contain two different cations, M+ and M'2+ crystallized in the same regular ionic lattice. [1] The univalent cation can be potassium, rubidium, caesium, ammonium (NH4), deuterated ammonium (ND4) or thallium. Sodium or lithium ions are too small. The divalent cation can be magnesium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc or cadmium. In addition to sulfate and selenate, the divalent anion can be chromate (CrO42−), tetrafluoroberyllate (BeF42−), hydrogenphosphate (HPO42−) [2] or monofluorophosphate (PO3F2−). Tutton's salts crystallize in the monoclinic space group P21/a. [3] The robustness is the result of the complementary hydrogen-bonding between the tetrahedral anions and cations as well their interactions with the metal aquo complex [M(H2O)6]2+.
Perhaps the best-known is Mohr's salt, ferrous ammonium sulfate (NH4)2Fe(SO4)2.(H2O)6). [4] Other examples include the vanadous Tutton salt (NH4)2V(SO4)2(H2O)6 and the chromous Tutton salt (NH4)2Cr(SO4)2(H2O)6. [5] In solids and solutions, the M'2+ ion exists as a metal aquo complex [M'(H2O)6]2+.
Related to the Tutton's salts are the alums, which are also double salts but with the formula MM'(SO4)2(H2O)12. The Tutton's salts were once termed "false alums". [6]
Tutton salts are sometimes called Schönites after the naturally occurring mineral called Schönite (K2Mg(SO4)2(H2O)6). They are named for Alfred Edwin Howard Tutton, who identified and characterised a large range of these salts around 1900. [7]
Such salts were of historical importance because they were obtainable in high purity and served as reliable reagents and spectroscopic standards.
M1 | M2 | formula | name | a Å | b Å | c Å | β° | V Å3 | colour | Nα | Nβ | Nγ | Biaxial | 2V | other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | Cd | K2[Cd(H2O)6](SO4)2 | Potassium cadmium sulfate hexahydrate [8] | ||||||||||||
Cs | Cd | Cs2[Cd(H2O)6](SO4)2 | caesium cadmium sulphate hexahydrate [9] | ||||||||||||
NH4 | Cd | (NH4)2[Cd(H2O)6](SO4)2 | Ammonium Cadmium Sulfate Hydrate | 9.395 | 12.776 | 6.299 | 106°43' | 727.63 | colourless | l.486 | 1.488 | 1.494 | Biaxial(-f) | large [10] | density=2.05 [11] Slowly loses water in dry air. [12] |
K | Co | K2[Co(H2O)6](SO4)2 [13] | Potassium cobaltous sulfate [14] | 6.151 | 9.061 | 12.207 | 104.8° | 657.78 [15] | red | density=2.21 | |||||
Rb | Co | Rb2[Co(H2O)6](SO4)2 | Rubidium hexaaquacobalt(II) sulphate | 6.24 | 9.19 | 12.453 | 105.99° | 686.5 [12] | ruby-red [16] | desnsity=2.56 | |||||
Cs | Co | Cs2[Co(H2O)6](SO4)2 | Caesium hexaaquacobalt(II) sulphate | 9.318(1) | 12.826(3) | 6.3650(9) | 107.13(1)° | 727.0 [17] | dark red | ||||||
NH4 | Co | (NH4)2[Co(H2O)6](SO4)2 [18] | Cobaltous ammonium sulfate hexahydrate | 6.242 | 9.255 | 12.549 | 106.98° | 693.3 [19] | purple [20] | density=1.89 | |||||
Tl | Co | Tl2[Co(H2O)6](SO4)2 | Cobaltous thallium sulfate hexahydrate, Thallium hexaaquacobalt(II) sulfate, | 9.227(1) | 12.437(2) | 6.220(1) | 106.40(1)° | 684.7 | light red [21] | ||||||
Tl | Co | Tl2[Co(H2O)6](SO4)2 | dithallium cobalt sulfate hexahydrate | 9.235(1) | 12.442(2) | 6.227(1) | 106.40(1)° | yellowish pink | 1.599 | 1.613 | 1.624 | biaxial(-) | medium large [22] | density=4.180 g/cm3 | |
Rb | Cr | Rb2[Cr(H2O)6](SO4)2 [23] | dirubidium chromium sulfate hexahydrate | ||||||||||||
Cs | Cr | Cs2[Cr(H2O)6](SO4)2 [23] | dicaesium chromium sulfate hexahydrate | ||||||||||||
ND4 | Cr | (ND4)2Cr(SO4)2 · 6 H2O [23] | dideuterated ammonium chromium sulfate hexahydrate | bright blue, | formed from with ammonium sulfate in minimal water under nitrogen gas. Stable in air from oxidation, but may dehydrate. [24] | ||||||||||
K | Cu | K2[Cu(H2O)6](SO4)2 | cyanochroite [14] | 9.27 | 12.44 | 6.30 | 104.47 [25] | 663.0 [25] | pale green blue | density=2.21 [25] within unit cell 7.76 between two Cu atoms [26] | |||||
Rb | Cu | Rb2[Cu(H2O)6](SO4)2 | Dirubidium hexaaquacopper sulfate | 9.267 | 12.366 | 6.228 | 105°19' | 686.8 | brilliant greenish blue | 1.488 | 1.491 | 1.506 | biaxial (+) [27] | medium | density=2.580g/cm3 [10] Cu-O 2.098 Å Rb-O 3.055 Å. [27] |
Cs | Cu | Cs2[Cu(H2O)6](SO4)2 [28] | dicaesium hexaaquacopper sulfate | 9.439 | 12.762 | 6.310 | 106°11' | 718.5 | brilliant greenish blue, | 1.504 | 1.506 | 1.514 | biaxial (+) | density=2.864g/cm3 [29] | |
NH4 | Cu | (NH4)2[Cu(H2O)6](SO4)2 | ammonium hexaaquacopper(II) sulfate [30] | 6.31 | 12.38 | 9.22 | 106.16° | 691.25 [31] | density=1.921; [31] heat of formation=-777.9 kcal/mol [31] Jahn-Teller distortion axis switches under pressure of ~1500 bars, a,b axis shrinks 3.3% and 3.5% and c axis extends 4.5%. [30] | ||||||
Tl | Cu | Tl2[Cu(H2O)6](SO4)2 | Thallium copper sulfate hydrate | 9.268 | 12.364 | 6.216 | 105°33' | brilliant greenish blue | 1.600 | 1.610 | 1.620 | biaxial | very large [32] | density=3.740 g/cm3 | |
K | Fe | K2[Fe(H2O)6](SO4)2 | dipotassium iron sulfate hexahydrate [14] | ||||||||||||
Rb | Fe | Rb2[Fe(H2O)6](SO4)2 | Rubidium iron sulfate hydrate | 9.218 | 12.497 | 6.256 | 105°45' | pale green | 1.480 | 1.489 | 1.501 | biaxial (+) | large, | density=2.523g/cm3 [33] | |
Cs | Fe | Cs2[Fe(H2O)6](SO4)2 | Caesium hexaaquairon(II) sulphate | 9.357(2) | 12.886(2) | 6.381(1) | 106.94(1)° | 736.0 | dark yellow [17] very pale green | 1.501 | 1.504 | 1.516 | biaxial (+) | medium [34] | density=2.805 |
NH4 | Fe | (NH4)2[Fe(H2O)6](SO4)2 | mohrite [14] | 6.24(1) | 12.65(2) | 9.32(2) | 106.8(1) | 704.28 | vitreous pale green | density=1.85 named after Karl Friedrich Mohr [35] | |||||
Tl | Fe | Tl2[Fe(H2O)6](SO4)2 | Thallium hexaaquairon(II) sulfate | 9.262(2) | 12.497(1) | 6.235(2) | 106.15(1)° | 693.2 [21] | light green | 1.590 | 1.605 | =1.616 | biaxial (-) | large | density=3.662g/cm3 [36] |
K | Mg | K2[Mg(H2O)6](SO4)2 | picromerite | 9.04 | 12.24 | 6.095 | 104° 48' [14] | colourless or white | 1.460 | 1.462 | 1.472 | biaxial (+) | medium | density=2.025g/cm3; [37] expanded second coordination sphere around Mg. [14] | |
Rb | Mg | Rb2[Mg(H2O)6](SO4)2 | rubidium magnesium sulphate hexahydrate [38] | 9.235 | 12.486 | 6.224 | 105°59' | colourless | 1.467 | 1.469 | 1.476 [39] | biaxial | |||
Cs | Mg | Cs2[Mg(H2O)6](SO4)2 | Caesium hexaaquamagnesium sulphate | 9.338(2) | 12.849(4) | 6.361(2) | 107.07(2)° | 729.6 | colourless [17] | 1.481 | 1.485 | 1.492 | biaxial(+) | medium | density=2.689 [40] |
NH4 | Mg | (NH4)2[Mg(H2O)6](SO4)2 | boussingaultite | 9.28 | 12.57 | 6.2 | 107°6' [14] [18] | ||||||||
NH4 | Mg | (NH4)2[Mg(H2O)6](SO4)2 | Ammonium Magnesium Chromium Oxide Hydrate | 9.508±.001 | 12.674 | 6.246 | 106°14' | bright yellow | 1.637 | 1.638 | 1.653 | biaxial(+) | small | density=1.840 g/cm 3 [10] | |
Tl | Mg | Tl2[Mg(H2O)6](SO4)2 [41] | dithallium magnesium sulfate hexahydrate | 9.22 9.262(2) | 12.42 12.459(2) | 6.185 6.207(1) | 106°30' 106.39(2)° | 687.1 | colourless [21] | density=3.532 g/cm3 | |||||
Rb | Mn | Rb2[Mn(H2O)6](SO4)2 | Dirubidium hexaaquamanganese sulfate(VI) | 9.282(2) | 12.600(2) | 6.254(2) | 105.94(2) | 703.3Å3 [42] [43] | |||||||
Cs | Mn | Cs2[Mn(H2O)6](SO4)2 | Caesium hexaaquamanganese(II) sulphate | 9.418(3) | 12.963(2) | 6.386(3) | 107.17(4)° | 744.9 | pale pink [17] purplish white [44] | 1.495 | 1.497 | 1.502 | biaxial(+) | large | density=2.763 [44] |
NH4 | Mn | (NH4)2[Mn(H2O)6](SO4)2 | manganese ammonium sulfate hexahydrate | 9.40 | 12.74 | 6.26 | 107.0° [45] | pale pink | 1.482 | 1.456 | 1.492 | biaxial(+) | large | density=1.827 [46] | |
Tl | Mn | Tl2[Mn(H2O)6](SO4)2 | Thallium manganese sulfate hexahydrate | 9.3276(6), 9.322(2) | 12.5735(8), 12.565(2) | 6.2407(4), and 6.233(1) | 106.310(3)° [47] 106.29(2)°, | 700.8 [21] | light pink | ||||||
K | Ni | K2Ni(SO4)2 · 6 H2O [13] | Potassium Nickel Sulfate Hexahydrate [14] used as UV filter [48] | ||||||||||||
Rb | Ni | Rb2[Ni(H2O)6](SO4)2 | Rubidium Nickel Sulfate Hexahydrate | 6.221 | 12.41 | 9.131 | 106.055° | 677.43 | 001 surface has step growth of 4.6 Å, optical transmission bands at 250, 500 and 860 nm which are the same as nickel sulfate hexahydrate, but UV band transmits more. Heavy absorption 630-720 nm and 360-420 nm3 density 2.596 g cm−3. [48] stable to 100.5 °C solubility in g/100ml=0.178t + 4.735 MW=529.87 | ||||||
Cs | Ni | Cs2[Ni(H2O)6](SO4)2 | Caesium hexaaquanickel(II) sulphate, Caesium Nickel Sulfate Hexahydrate | 9.259(2) | 12.767(2) | 6.358(1) | 107.00(2)° | 718.7 [17] | greenish blue | 1.507 | 1.512 | 1.516 | biaxial(-) | very large | density=2.883 [49] used as UV filter [48] |
NH4 | Ni | (NH4)2[Ni(H2O)6](SO4)2 | nickel-boussingaultite [14] [50] | 9.186 | 12.468 | 6.424 | 684.0 | blueish green. [51] [52] | density=1.918 cas=51287-85-5 | ||||||
Tl | Ni | Tl2[Ni(H2O)6](SO4)2 | Thallium hexaaquanickel(II) sulfate | 9.161(2) | 12.389(2) | 6.210(2) | 106.35(2)° | 676.3 | greenish blue [21] | 1.602 | 1.615 | 1.620 | biaxial(-) | large | density=3.763 [53] |
K | Ru | K2[Ru(H2O)6](SO4)2 | [54] | 8.950 | 12.268 | 6.135 | 105.27 | 644 | |||||||
Rb | Ru | Rb2[Ru(H2O)6](SO4)2 | [54] | 9.132 | 12.527 | 6.351 | 106.30 | ||||||||
K | V | K2[V(H2O)6](SO4)2 | Vanadium(II) potassium sulfate hexahydrate [55] | ||||||||||||
Rb | V | Rb2[V(H2O)6](SO4)2 | Rubidium vanadium(II) sulfate | ||||||||||||
NH4 | V | (NH4)2[V(H2O)6](SO4)2 | Vanadium(II) ammonium sulfate hexahydrate | 9.42 | 12.76 | 6.22 | 107.2° | 714.2 | amethyst | density=1.8 V-O length 2.15Å [56] | |||||
K | Zn | K2[Zn(H2O)6](SO4)2 [13] [14] | dipotassium zinc sulphate hexahydrate | 9.041 | 12.310 | 6.182 | 104.777° | colourless | 1.478 | 1.481 | 1.496 | biaxial | large | density=2.242g/cm3 [57] Thermal decomposition at 252K. [58] | |
Rb | Zn | Rb2[Zn(H2O)6](SO4)2 | Rubidium Zinc Sulphate Hexahydrate [59] | 9.185 | 12.450 | 6.242 | 105°54' | colourless | 1.483 | 1.489 | 1.497 | biaxial | large [60] | ||
Cs | Zn | Cs2[Zn(H2O)6](SO4)2 | zinc caesium sulphate hexahydrate [61] | 9.314(2) | 12.817(2) | 6.369(2) | 106.94(2)° | 727.3 | colourless [17] | 1.507 | 1.610 | 1.615 | biaxial(-) | large | density=2.881 [62] |
NH4 | Zn | (NH4)2[Zn(H2O)6](SO4)2 | 9.205 | 12.475 | 6.225 | 106°52' [18] | 684.1 | heat of fusion 285 J/g [63] | |||||||
Tl | Zn | Tl2[Zn(H2O)6](SO4)2 | Thallium hexaaquazinc(II) sulfate [64] | 9.219(2) | 12.426(2) | 6.226(1) | 106.29(2)° | 684.6 | colourless [21] | ||||||
selenates | |||||||||||||||
Cs | Ni | Cs2[Zn(H2O)6](SeO4)2 | Dicaesium nickel selenate hexahydrate [65] | 7.4674 | 7.9152 | 11.7972 | 106.363 | 669.04 | light green | ||||||
Rb | Cu | Rb2[Cu(H2O)6](SeO4)2 | Dirubidium copper selenate hexahydrate [66] | 6.363 | 12.431 | 9.373 | 104.33 | 718.3 |
Some organic bases can also form salts that crystallise like Tutton's salts.
formula | name | a Å | b Å | c Å | β° | V Å3 | colour | Nα | Nβ | Nγ | Biaxial | 2V | other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(C4H12N2)[Zn(H2O)6](SO4)2 | piperazinediium hexaaquazinc(II) bis(sulfate) [67] | 12.9562 | 10.6502 | 13.3251 | 114.032 | 1679.30 | Colourless | ||||||
cadmium creatininium sulfate [68] | 6.5584 | 27.871 | 7.1955 | 110.371 | 1232.99 | colourless | |||||||
Iron(II) sulfate (British English: iron(II) sulphate) or ferrous sulfate denotes a range of salts with the formula FeSO4·xH2O. These compounds exist most commonly as the heptahydrate (x = 7) but several values for x are known. The hydrated form is used medically to treat or prevent iron deficiency, and also for industrial applications. Known since ancient times as copperas and as green vitriol (vitriol is an archaic name for hydrated sulfate minerals), the blue-green heptahydrate (hydrate with 7 molecules of water) is the most common form of this material. All the iron(II) sulfates dissolve in water to give the same aquo complex [Fe(H2O)6]2+, which has octahedral molecular geometry and is paramagnetic. The name copperas dates from times when the copper(II) sulfate was known as blue copperas, and perhaps in analogy, iron(II) and zinc sulfate were known respectively as green and white copperas.
Magnesium sulfate or magnesium sulphate is a chemical compound, a salt with the formula MgSO4, consisting of magnesium cations Mg2+ (20.19% by mass) and sulfate anions SO2−4. It is a white crystalline solid, soluble in water but not in ethanol.
Copper(II) sulfate is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate (n = 5), a bright blue crystal, is the most commonly encountered hydrate of copper(II) sulfate, while its anhydrous form is white. Older names for the pentahydrate include blue vitriol, bluestone, vitriol of copper, and Roman vitriol. It exothermically dissolves in water to give the aquo complex [Cu(H2O)6]2+, which has octahedral molecular geometry. The structure of the solid pentahydrate reveals a polymeric structure wherein copper is again octahedral but bound to four water ligands. The Cu(II)(H2O)4 centers are interconnected by sulfate anions to form chains.
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.
A double salt is a salt that contains two or more different cations or anions. Examples of double salts include alums (with the general formula MIMIII(SO4)2·12H2O) and Tutton's salts (with the general formula (MI)2MII(SO4)2·6H2O). Other examples include potassium sodium tartrate, ammonium iron(II) sulfate (Mohr's salt), potassium uranyl sulfate (used to discover radioactivity) and bromlite BaCa(CO3)2. The fluorocarbonates contain fluoride and carbonate anions. Many coordination complexes form double salts.
Silver sulfate is the inorganic compound with the formula Ag2SO4. It is a white solid with low solubility in water.
Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.
Nickel(II) sulfate, or just nickel sulfate, usually refers to the inorganic compound with the formula NiSO4(H2O)6. This highly soluble turquoise coloured salt is a common source of the Ni2+ ion for electroplating. Approximately 40,000 tonnes were produced in 2005.
In crystallography, a diffraction standard, or calibration crystal, is a crystal used to calibrate an X-ray spectrometer to an absolute X-ray energy scale. A range of materials may be used including quartz or silicon crystals. There are also reports of crystals of silver behenate or silver stearate having been used for this purpose.
Ammonium iron(II) sulfate, or Mohr's salt, is the inorganic compound with the formula (NH4)2SO4·Fe(SO4)·6H2O. Containing two different cations, Fe2+ and NH+4, it is classified as a double salt of ferrous sulfate and ammonium sulfate. It is a common laboratory reagent because it is readily crystallized, and crystals resist oxidation by air. Like the other ferrous sulfate salts, ferrous ammonium sulfate dissolves in water to give the aquo complex [Fe(H2O)6]2+, which has octahedral molecular geometry. Its mineral form is mohrite.
Cobalt(II) sulfate is any of the inorganic compounds with the formula CoSO4(H2O)x. Usually cobalt sulfate refers to the hexa- or heptahydrates CoSO4.6H2O or CoSO4.7H2O, respectively. The heptahydrate is a red solid that is soluble in water and methanol. Since cobalt(II) has an odd number of electrons, its salts are paramagnetic.
In chemistry, metal aquo complexes are coordination compounds containing metal ions with only water as a ligand. These complexes are the predominant species in aqueous solutions of many metal salts, such as metal nitrates, sulfates, and perchlorates. They have the general stoichiometry [M(H2O)n]z+. Their behavior underpins many aspects of environmental, biological, and industrial chemistry. This article focuses on complexes where water is the only ligand, but of course many complexes are known to consist of a mix of aquo and other ligands.
Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M2M'2(SO4)3, where M is a large univalent cation, and M' is a small divalent cation. The sulfate group, SO2−4, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate, selenate, chromate, molybdate, or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.
Rubidium hydrogen sulfate, sometimes referred to as rubidium bisulfate, is the half neutralized rubidium salt of sulfuric acid. It has the formula RbHSO4.
Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.
Vanadium(II) sulfate describes a family of inorganic compounds with the formula VSO4(H2O)x where 0 ≤ x ≤ 7. The hexahydrate is most commonly encountered. It is a violet solid that dissolves in water to give air-sensitive solutions of the aquo complex. The salt is isomorphous with [Mg(H2O)6]SO4. Compared to the V–O bond length of 191 pm in [V(H2O)6]3+, the V–O distance is 212 pm in the [V(H2O)6]SO4. This nearly 10% elongation reflects the effect of the lower charge, hence weakened electrostatic attraction.
Nickel is one of the metals that can form Tutton's salts. The singly charged ion can be any of the full range of potassium, rubidium, cesium, ammonium (), or thallium. As a mineral the ammonium nickel salt, (NH4)2Ni(SO4)2 · 6 H2O, can be called nickelboussingaultite. With sodium, the double sulfate is nickelblödite Na2Ni(SO4)2 · 4 H2O from the blödite family. Nickel can be substituted by other divalent metals of similar sized to make mixtures that crystallise in the same form.
The Nickel oxyacid salts are a class of chemical compounds of nickel with an oxyacid. The compounds include a number of minerals and industrially important nickel compounds.
The sulfate carbonates are a compound carbonates, or mixed anion compounds that contain sulfate and carbonate ions. Sulfate carbonate minerals are in the 7.DG and 5.BF Nickel-Strunz groupings.
Gallium(III) sulfate refers to the chemical compound, a salt, with the formula Ga2(SO4)3, or its hydrates Ga2(SO4)3·xH2O. Gallium metal dissolves in sulfuric acid to form solutions containing [Ga(OH2)6]3+ and SO42− ions. The octadecahydrate Ga2(SO4)3·18H2O crystallises from these solutions at room temperature. This hydrate loses water in stages when heated, forming the anhydrate Ga2(SO4)3 above 150 °C and completely above 310 °C. Anhydrous Ga2(SO4)3 is isostructural with iron(III) sulfate, crystallizing in the rhombohedral space group R3.
{{cite book}}
: CS1 maint: location missing publisher (link)