Tutton's salt

Last updated

Tutton's salts are a family of salts with the formula M2M'(SO4)2(H2O)6 (sulfates) or M2M'(SeO4)2(H2O)6 (selenates). These materials are double salts, which means that they contain two different cations, M+ and M'2+ crystallized in the same regular ionic lattice. [1] The univalent cation can be potassium, rubidium, caesium, ammonium (NH4), deuterated ammonium (ND4) or thallium. Sodium or lithium ions are too small. The divalent cation can be magnesium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc or cadmium. In addition to sulfate and selenate, the divalent anion can be chromate (CrO42−), tetrafluoroberyllate (BeF42−), hydrogenphosphate (HPO42−) [2] or monofluorophosphate (PO3F2−). Tutton's salts crystallize in the monoclinic space group P21/a. [3] The robustness is the result of the complementary hydrogen-bonding between the tetrahedral anions and cations as well their interactions with the metal aquo complex [M(H2O)6]2+.

Contents

Perhaps the best-known is Mohr's salt, ferrous ammonium sulfate (NH4)2Fe(SO4)2.(H2O)6). [4] Other examples include the vanadous Tutton salt (NH4)2V(SO4)2(H2O)6 and the chromous Tutton salt (NH4)2Cr(SO4)2(H2O)6. [5] In solids and solutions, the M'2+ ion exists as a metal aquo complex [M'(H2O)6]2+.

Related to the Tutton's salts are the alums, which are also double salts but with the formula MM'(SO4)2(H2O)12. The Tutton's salts were once termed "false alums". [6]

History

Tutton salts are sometimes called Schönites after the naturally occurring mineral called Schönite (K2Mg(SO4)2(H2O)6). They are named for Alfred Edwin Howard Tutton, who identified and characterised a large range of these salts around 1900. [7]
Such salts were of historical importance because they were obtainable in high purity and served as reliable reagents and spectroscopic standards.

Table of salts

M1M2formulanamea Åb Åc Åβ°V Å3colourBiaxial2Vother
KCdK2[Cd(H2O)6](SO4)2Potassium cadmium sulfate hexahydrate [8]
CsCdCs2[Cd(H2O)6](SO4)2caesium cadmium sulphate hexahydrate [9]
NH4Cd(NH4)2[Cd(H2O)6](SO4)2Ammonium Cadmium Sulfate Hydrate9.39512.7766.299106°43'727.63colourlessl.4861.4881.494Biaxial(-f)large [10] density=2.05 [11]

Slowly loses water in dry air. [12]

KCoK2[Co(H2O)6](SO4)2 [13] Potassium cobaltous sulfate [14] 6.1519.06112.207104.8°657.78 [15] reddensity=2.21
RbCoRb2[Co(H2O)6](SO4)2Rubidium hexaaquacobalt(II) sulphate6.249.1912.453105.99°686.5 [12] ruby-red [16] desnsity=2.56
CsCoCs2[Co(H2O)6](SO4)2Caesium hexaaquacobalt(II) sulphate9.318(1)12.826(3)6.3650(9)107.13(1)°727.0 [17] dark red
NH4Co(NH4)2[Co(H2O)6](SO4)2 [18] Cobaltous ammonium sulfate hexahydrate6.2429.25512.549106.98°693.3 [19] purple [20] density=1.89
TlCoTl2[Co(H2O)6](SO4)2Cobaltous thallium sulfate hexahydrate, Thallium hexaaquacobalt(II) sulfate,9.227(1)12.437(2)6.220(1)106.40(1)°684.7light red [21]
TlCoTl2[Co(H2O)6](SO4)2dithallium cobalt sulfate hexahydrate9.235(1)12.442(2)6.227(1)106.40(1)°yellowish pink1.5991.6131.624biaxial(-)medium large [22] density=4.180 g/cm3
RbCrRb2[Cr(H2O)6](SO4)2 [23] dirubidium chromium sulfate hexahydrate
CsCrCs2[Cr(H2O)6](SO4)2 [23] dicaesium chromium sulfate hexahydrate
ND4Cr(ND4)2Cr(SO4)2 · 6 H2O [23] dideuterated ammonium chromium sulfate hexahydratebright blue,formed from with ammonium sulfate in minimal water under nitrogen gas. Stable in air from oxidation, but may dehydrate. [24]
KCuK2[Cu(H2O)6](SO4)2 cyanochroite [14] 9.2712.446.30104.47 [25] 663.0 [25] pale green bluedensity=2.21 [25] within unit cell 7.76 between two Cu atoms [26]
RbCuRb2[Cu(H2O)6](SO4)2Dirubidium hexaaquacopper sulfate9.26712.3666.228105°19'686.8brilliant greenish blue1.4881.4911.506biaxial (+) [27] mediumdensity=2.580g/cm3 [10] Cu-O 2.098 Å Rb-O 3.055 Å. [27]
CsCuCs2[Cu(H2O)6](SO4)2 [28] dicaesium hexaaquacopper sulfate9.43912.7626.310106°11'718.5brilliant greenish blue,1.5041.5061.514biaxial (+)density=2.864g/cm3 [29]
NH4Cu(NH4)2[Cu(H2O)6](SO4)2ammonium hexaaquacopper(II) sulfate [30] 6.3112.389.22106.16°691.25 [31] density=1.921; [31] heat of formation=-777.9 kcal/mol [31] Jahn-Teller distortion axis switches under pressure of ~1500 bars, a,b axis shrinks 3.3% and 3.5% and c axis extends 4.5%. [30]
TlCuTl2[Cu(H2O)6](SO4)2Thallium copper sulfate hydrate9.26812.3646.216105°33'brilliant greenish blue1.6001.6101.620biaxialvery large [32] density=3.740 g/cm3
KFeK2[Fe(H2O)6](SO4)2dipotassium iron sulfate hexahydrate [14]
RbFeRb2[Fe(H2O)6](SO4)2Rubidium iron sulfate hydrate9.21812.4976.256105°45'pale green1.4801.4891.501biaxial (+)large,density=2.523g/cm3 [33]
CsFeCs2[Fe(H2O)6](SO4)2Caesium hexaaquairon(II) sulphate9.357(2)12.886(2)6.381(1)106.94(1)°736.0dark yellow [17] very pale green1.5011.5041.516biaxial (+)medium [34] density=2.805
NH4Fe(NH4)2[Fe(H2O)6](SO4)2 mohrite [14] 6.24(1)12.65(2)9.32(2)106.8(1)704.28vitreous pale greendensity=1.85 named after Karl Friedrich Mohr [35]
TlFeTl2[Fe(H2O)6](SO4)2Thallium hexaaquairon(II) sulfate9.262(2)12.497(1)6.235(2)106.15(1)°693.2 [21] light green1.5901.605=1.616biaxial (-)largedensity=3.662g/cm3 [36]
KMgK2[Mg(H2O)6](SO4)2 picromerite 9.0412.246.095104° 48' [14] colourless or white1.4601.4621.472biaxial (+)mediumdensity=2.025g/cm3; [37] expanded second coordination sphere around Mg. [14]
RbMgRb2[Mg(H2O)6](SO4)2rubidium magnesium sulphate hexahydrate [38] 9.23512.4866.224105°59'colourless1.4671.4691.476 [39] biaxial
CsMgCs2[Mg(H2O)6](SO4)2Caesium hexaaquamagnesium sulphate9.338(2)12.849(4)6.361(2)107.07(2)°729.6colourless [17] 1.4811.4851.492biaxial(+)mediumdensity=2.689 [40]
NH4Mg(NH4)2[Mg(H2O)6](SO4)2 boussingaultite 9.2812.576.2107°6' [14] [18]
NH4Mg(NH4)2[Mg(H2O)6](SO4)2Ammonium Magnesium Chromium Oxide Hydrate9.508±.00112.6746.246106°14'bright yellow1.6371.6381.653biaxial(+)smalldensity=1.840 g/cm 3 [10]
TlMgTl2[Mg(H2O)6](SO4)2 [41] dithallium magnesium sulfate hexahydrate9.22 9.262(2)12.42 12.459(2)6.185 6.207(1)106°30' 106.39(2)°687.1colourless [21] density=3.532 g/cm3
RbMnRb2[Mn(H2O)6](SO4)2Dirubidium hexaaquamanganese sulfate(VI)9.282(2)12.600(2)6.254(2)105.94(2)703.3Å3 [42] [43]
CsMnCs2[Mn(H2O)6](SO4)2Caesium hexaaquamanganese(II) sulphate9.418(3)12.963(2)6.386(3)107.17(4)°744.9pale pink [17] purplish white [44] 1.4951.4971.502biaxial(+)largedensity=2.763 [44]
NH4Mn(NH4)2[Mn(H2O)6](SO4)2manganese ammonium sulfate hexahydrate9.4012.746.26107.0° [45] pale pink1.4821.4561.492biaxial(+)largedensity=1.827 [46]
TlMnTl2[Mn(H2O)6](SO4)2Thallium manganese sulfate hexahydrate9.3276(6), 9.322(2)12.5735(8), 12.565(2)6.2407(4), and 6.233(1)106.310(3)° [47] 106.29(2)°,700.8 [21] light pink
KNiK2Ni(SO4)2 · 6 H2O [13] Potassium Nickel Sulfate Hexahydrate [14] used as UV filter [48]
RbNiRb2[Ni(H2O)6](SO4)2Rubidium Nickel Sulfate Hexahydrate6.22112.419.131106.055°677.43001 surface has step growth of 4.6 Å, optical transmission bands at 250, 500 and 860 nm which are the same as nickel sulfate hexahydrate, but UV band transmits more. Heavy absorption 630-720 nm and 360-420 nm3 density 2.596 g cm−3. [48] stable to 100.5 °C solubility in g/100ml=0.178t + 4.735 MW=529.87
CsNiCs2[Ni(H2O)6](SO4)2Caesium hexaaquanickel(II) sulphate, Caesium Nickel Sulfate Hexahydrate9.259(2)12.767(2)6.358(1)107.00(2)°718.7 [17] greenish blue1.5071.5121.516biaxial(-)very largedensity=2.883 [49] used as UV filter [48]
NH4Ni(NH4)2[Ni(H2O)6](SO4)2 nickel-boussingaultite [14] [50] 9.18612.4686.424684.0blueish green. [51] [52] density=1.918 cas=51287-85-5
TlNiTl2[Ni(H2O)6](SO4)2Thallium hexaaquanickel(II) sulfate9.161(2)12.389(2)6.210(2)106.35(2)°676.3greenish blue [21] 1.6021.6151.620biaxial(-)largedensity=3.763 [53]
KRuK2[Ru(H2O)6](SO4)2 [54] 8.95012.2686.135105.27644
RbRuRb2[Ru(H2O)6](SO4)2 [54] 9.13212.5276.351106.30
KVK2[V(H2O)6](SO4)2Vanadium(II) potassium sulfate hexahydrate [55]
RbVRb2[V(H2O)6](SO4)2Rubidium vanadium(II) sulfate
NH4V(NH4)2[V(H2O)6](SO4)2Vanadium(II) ammonium sulfate hexahydrate9.4212.766.22107.2°714.2amethystdensity=1.8 V-O length 2.15Å [56]
KZnK2[Zn(H2O)6](SO4)2 [13] [14] dipotassium zinc sulphate hexahydrate9.04112.3106.182104.777°colourless1.4781.4811.496biaxiallargedensity=2.242g/cm3 [57] Thermal decomposition at 252K. [58]
RbZnRb2[Zn(H2O)6](SO4)2Rubidium Zinc Sulphate Hexahydrate [59] 9.18512.4506.242105°54'colourless1.4831.4891.497biaxiallarge [60]
CsZnCs2[Zn(H2O)6](SO4)2zinc caesium sulphate hexahydrate [61] 9.314(2)12.817(2)6.369(2)106.94(2)°727.3colourless [17] 1.5071.6101.615biaxial(-)largedensity=2.881 [62]
NH4Zn(NH4)2[Zn(H2O)6](SO4)29.20512.4756.225106°52' [18] 684.1heat of fusion 285 J/g [63]
TlZnTl2[Zn(H2O)6](SO4)2Thallium hexaaquazinc(II) sulfate [64] 9.219(2)12.426(2)6.226(1)106.29(2)°684.6colourless [21]
selenates
CsNiCs2[Zn(H2O)6](SeO4)2Dicaesium nickel selenate hexahydrate [65] 7.46747.915211.7972106.363669.04light green
RbCuRb2[Cu(H2O)6](SeO4)2Dirubidium copper selenate hexahydrate [66] 6.36312.4319.373104.33718.3

Organic salts

Some organic bases can also form salts that crystallise like Tutton's salts.

formulanamea Åb Åc Åβ°V Å3colourBiaxial2Vother
(C4H12N2)[Zn(H2O)6](SO4)2piperazinediium hexaaquazinc(II) bis(sulfate) [67] 12.956210.650213.3251114.0321679.30Colourless
cadmium creatininium sulfate [68] 6.558427.8717.1955110.3711232.99colourless

Related Research Articles

<span class="mw-page-title-main">Iron(II) sulfate</span> Chemical compound

Iron(II) sulfate (British English: iron(II) sulphate) or ferrous sulfate denotes a range of salts with the formula FeSO4·xH2O. These compounds exist most commonly as the heptahydrate (x = 7) but several values for x are known. The hydrated form is used medically to treat or prevent iron deficiency, and also for industrial applications. Known since ancient times as copperas and as green vitriol (vitriol is an archaic name for hydrated sulfate minerals), the blue-green heptahydrate (hydrate with 7 molecules of water) is the most common form of this material. All the iron(II) sulfates dissolve in water to give the same aquo complex [Fe(H2O)6]2+, which has octahedral molecular geometry and is paramagnetic. The name copperas dates from times when the copper(II) sulfate was known as blue copperas, and perhaps in analogy, iron(II) and zinc sulfate were known respectively as green and white copperas.

<span class="mw-page-title-main">Magnesium sulfate</span> Chemical compound with formula MgSO4

Magnesium sulfate or magnesium sulphate is a chemical compound, a salt with the formula MgSO4, consisting of magnesium cations Mg2+ (20.19% by mass) and sulfate anions SO2−4. It is a white crystalline solid, soluble in water but not in ethanol.

<span class="mw-page-title-main">Copper(II) sulfate</span> Chemical compound

Copper(II) sulfate is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate (n = 5), a bright blue crystal, is the most commonly encountered hydrate of copper(II) sulfate, while its anhydrous form is white. Older names for the pentahydrate include blue vitriol, bluestone, vitriol of copper, and Roman vitriol. It exothermically dissolves in water to give the aquo complex [Cu(H2O)6]2+, which has octahedral molecular geometry. The structure of the solid pentahydrate reveals a polymeric structure wherein copper is again octahedral but bound to four water ligands. The Cu(II)(H2O)4 centers are interconnected by sulfate anions to form chains.

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Double salt</span> Type of salt

A double salt is a salt that contains two or more different cations or anions. Examples of double salts include alums (with the general formula MIMIII(SO4)2·12H2O) and Tutton's salts (with the general formula (MI)2MII(SO4)2·6H2O). Other examples include potassium sodium tartrate, ammonium iron(II) sulfate (Mohr's salt), potassium uranyl sulfate (used to discover radioactivity) and bromlite BaCa(CO3)2. The fluorocarbonates contain fluoride and carbonate anions. Many coordination complexes form double salts.

<span class="mw-page-title-main">Silver sulfate</span> Chemical compound

Silver sulfate is the inorganic compound with the formula Ag2SO4. It is a white solid with low solubility in water.

Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.

<span class="mw-page-title-main">Nickel(II) sulfate</span> Chemical compound

Nickel(II) sulfate, or just nickel sulfate, usually refers to the inorganic compound with the formula NiSO4(H2O)6. This highly soluble turquoise coloured salt is a common source of the Ni2+ ion for electroplating. Approximately 40,000 tonnes were produced in 2005.

In crystallography, a diffraction standard, or calibration crystal, is a crystal used to calibrate an X-ray spectrometer to an absolute X-ray energy scale. A range of materials may be used including quartz or silicon crystals. There are also reports of crystals of silver behenate or silver stearate having been used for this purpose.

<span class="mw-page-title-main">Ammonium iron(II) sulfate</span> Chemical compound

Ammonium iron(II) sulfate, or Mohr's salt, is the inorganic compound with the formula (NH4)2SO4·Fe(SO4)·6H2O. Containing two different cations, Fe2+ and NH+4, it is classified as a double salt of ferrous sulfate and ammonium sulfate. It is a common laboratory reagent because it is readily crystallized, and crystals resist oxidation by air. Like the other ferrous sulfate salts, ferrous ammonium sulfate dissolves in water to give the aquo complex [Fe(H2O)6]2+, which has octahedral molecular geometry. Its mineral form is mohrite.

<span class="mw-page-title-main">Cobalt(II) sulfate</span> Inorganic compound

Cobalt(II) sulfate is any of the inorganic compounds with the formula CoSO4(H2O)x. Usually cobalt sulfate refers to the hexa- or heptahydrates CoSO4.6H2O or CoSO4.7H2O, respectively. The heptahydrate is a red solid that is soluble in water and methanol. Since cobalt(II) has an odd number of electrons, its salts are paramagnetic.

In chemistry, metal aquo complexes are coordination compounds containing metal ions with only water as a ligand. These complexes are the predominant species in aqueous solutions of many metal salts, such as metal nitrates, sulfates, and perchlorates. They have the general stoichiometry [M(H2O)n]z+. Their behavior underpins many aspects of environmental, biological, and industrial chemistry. This article focuses on complexes where water is the only ligand, but of course many complexes are known to consist of a mix of aquo and other ligands.

Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M2M'2(SO4)3, where M is a large univalent cation, and M' is a small divalent cation. The sulfate group, SO2−4, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate, selenate, chromate, molybdate, or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.

Rubidium hydrogen sulfate, sometimes referred to as rubidium bisulfate, is the half neutralized rubidium salt of sulfuric acid. It has the formula RbHSO4.

Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

<span class="mw-page-title-main">Vanadium(II) sulfate</span> Chemical compound

Vanadium(II) sulfate describes a family of inorganic compounds with the formula VSO4(H2O)x where 0 ≤ x ≤ 7. The hexahydrate is most commonly encountered. It is a violet solid that dissolves in water to give air-sensitive solutions of the aquo complex. The salt is isomorphous with [Mg(H2O)6]SO4. Compared to the V–O bond length of 191 pm in [V(H2O)6]3+, the V–O distance is 212 pm in the [V(H2O)6]SO4. This nearly 10% elongation reflects the effect of the lower charge, hence weakened electrostatic attraction.

Nickel is one of the metals that can form Tutton's salts. The singly charged ion can be any of the full range of potassium, rubidium, cesium, ammonium (), or thallium. As a mineral the ammonium nickel salt, (NH4)2Ni(SO4)2 · 6 H2O, can be called nickelboussingaultite. With sodium, the double sulfate is nickelblödite Na2Ni(SO4)2 · 4 H2O from the blödite family. Nickel can be substituted by other divalent metals of similar sized to make mixtures that crystallise in the same form.

<span class="mw-page-title-main">Nickel oxyacid salts</span>

The Nickel oxyacid salts are a class of chemical compounds of nickel with an oxyacid. The compounds include a number of minerals and industrially important nickel compounds.

<span class="mw-page-title-main">Sulfate carbonate</span> Class of chemical compounds

The sulfate carbonates are a compound carbonates, or mixed anion compounds that contain sulfate and carbonate ions. Sulfate carbonate minerals are in the 7.DG and 5.BF Nickel-Strunz groupings.

Gallium(III) sulfate refers to the chemical compound, a salt, with the formula Ga2(SO4)3, or its hydrates Ga2(SO4)3·xH2O. Gallium metal dissolves in sulfuric acid to form solutions containing [Ga(OH2)6]3+ and SO42− ions. The octadecahydrate Ga2(SO4)3·18H2O crystallises from these solutions at room temperature. This hydrate loses water in stages when heated, forming the anhydrate Ga2(SO4)3 above 150 °C and completely above 310 °C. Anhydrous Ga2(SO4)3 is isostructural with iron(III) sulfate, crystallizing in the rhombohedral space group R3.

References

  1. Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall. p. 699. ISBN   978-0-13-175553-6.
  2. Ettoumi, Houda; Bulou, Alain; Suñol, Joan Josep; Mhiri, Tahar (November 2015). "Synthesis, crystal structure, and vibrational study of : A new metal hydrogenphosphate compound". Journal of Molecular Structure. 1099: 181–188. Bibcode:2015JMoSt1099..181E. doi:10.1016/j.molstruc.2015.06.060.
  3. Bosi, Ferdinando; Belardi, Girolamo; Ballirano, Paolo (2009). "Structural features in Tutton's salts K2[M2+(H2O)6](SO4)2, with M2+ = Mg, Fe, Co, Ni, Cu, and Zn". American Mineralogist . 94 (1): 74–82. Bibcode:2009AmMin..94...74B. doi:10.2138/am.2009.2898. S2CID   97302855.
  4. B. N. Figgis; E. S. Kucharski; P. A. Reynolds; F. Tasset (1989). "The structure of at 4.3 K by neutron diffraction". Acta Crystallogr. C45: 942–944. doi:10.1107/S0108270188013903.
  5. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  6. Taylor, F. Sherwood (1942). Inorganic and Theoretical Chemistry (6th ed.). William Heinemann.
  7. A. E. Tutton (1900–1901). "A Comparative Crystallographical Study of the Double Selenates of the Series .—Salts in Which M Is Zinc". Proceedings of the Royal Society of London. 67 (435–441): 58–84. doi: 10.1098/rspl.1900.0002 .
  8. Nyquist, Richard A.; Kagel, Ronald O. (30 March 1972). Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts: Infrared Spectra of Inorganic Compounds. Academic Press. pp. 297–298. ISBN   9780080878522 . Retrieved 18 June 2013. (also includes Ni Cu )
  9. Lakshman, S.V.J.; T.V.Krishna Rao (1984). "Absorption spectrum of ion doped in caesium cadmium sulphate hexahydrate single crystal". Solid State Communications. 49 (6): 567–570. Bibcode:1984SSCom..49..567L. doi:10.1016/0038-1098(84)90193-5. ISSN   0038-1098.
  10. 1 2 3 Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. Retrieved 16 June 2013.
  11. "materials database". Atom Work. Retrieved 2 July 2015.
  12. 1 2 "Materials Database". Atom Work. Retrieved 2 July 2015.
  13. 1 2 3 Ananthanarayanan, V. (1961). "Raman spectra of crystalline double sulphates". Zeitschrift für Physik. 163 (2): 144–157. Bibcode:1961ZPhy..163..144A. doi:10.1007/BF01336872. ISSN   1434-6001. S2CID   120815961.
  14. 1 2 3 4 5 6 7 8 9 10 Bosi, F.; G. Belardi; P. Ballirano (2009). "Structural features in Tutton's salts , with ". American Mineralogist. 94 (1): 74–82. Bibcode:2009AmMin..94...74B. doi:10.2138/am.2009.2898. ISSN   0003-004X. S2CID   97302855.
  15. "materials database". Atom Work. Retrieved 2 July 2015.
  16. Krebs, Robert E. (2006-01-01). The History And Use of Our Earth's Chemical Elements: A Reference Guide. Greenwood Publishing Group. p. 59. ISBN   9780313334382 . Retrieved 17 June 2013.
  17. 1 2 3 4 5 6 Euler, H.; B. Barbier; A. Meents; A. Kirfel (2003). "Crystal structure of Tutton's salts, , " (PDF). Zeitschrift für Kristallographie. New Crystal Structures. 218 (4): 409–413. doi: 10.1524/ncrs.2003.218.4.409 . ISSN   1433-7266 . Retrieved 15 June 2013.
  18. 1 2 3 Ananthanarayanan, V. (June 1962). "Raman spectra of crystalline double sulphates Part II. Ammonium double sulphates". Zeitschrift für Physik. 166 (3): 318–327. Bibcode:1962ZPhy..166..318A. doi:10.1007/BF01380779. S2CID   123224200.
  19. "Materials database". Atom Work.
  20. Lim, Ae Ran (2011). "Thermodynamic properties and phase transitions of Tutton salt crystals". Journal of Thermal Analysis and Calorimetry. 109 (3): 1619–1623. doi:10.1007/s10973-011-1849-2. ISSN   1388-6150. S2CID   95478618.
  21. 1 2 3 4 5 6 Euler, Harald; Bruno Barbier; Alke Meents; Armin Kirfel (2009). "Crystal structures of Tutton′s salts , ". Zeitschrift für Kristallographie - New Crystal Structures. 224 (3): 355–359. doi: 10.1524/ncrs.2009.0157 . ISSN   1433-7266.
  22. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 70. Retrieved June 17, 2013.
  23. 1 2 3 Dobe, Christopher; Christopher Noble; Graham Carver; Philip L. W. Tregenna-Piggott; Garry J. McIntyre; Anne-Laure Barra; Antonia Neels; Stefan Janssen; Fanni Juranyi (2004). "Electronic and Molecular Structure of High-Spin d4 Complexes: Experimental and Theoretical Study of the [Cr(D2O)6]2+Cation in Tutton's Salts". Journal of the American Chemical Society. 126 (50): 16639–16652. Bibcode:2004JAChS.12616639D. doi:10.1021/ja046095c. ISSN   0002-7863. PMID   15600370.
  24. Dobe, Christopher; Hans-Peter Andres; Philip L.W. Tregenna-Piggott; Susanne Mossin; Høgni Weihe; Stefan Janssen (2002). "Variable temperature inelastic neutron scattering study of chromium(II) Tutton salt: manifestation of the 5E ⊗ e Jahn–Teller effect". Chemical Physics Letters. 362 (5–6): 387–396. Bibcode:2002CPL...362..387D. doi:10.1016/S0009-2614(02)01131-4. ISSN   0009-2614.
  25. 1 2 3 "materials database" . Retrieved 2 July 2015.
  26. Zhou, Dawei; R. W. Kreilick (1993). "Electron spin exchange in single crystals of copper Tutton's salt ()". The Journal of Physical Chemistry. 97 (37): 9304–9310. doi:10.1021/j100139a009. ISSN   0022-3654.
  27. 1 2 Ballirano, Paolo; Girolamo Belardi (2007). "Rietveld refinement of the Tutton's salt from parallel-beam X-ray powder diffraction data". Acta Crystallographica Section E. 63 (2): i56–i58. doi:10.1107/S1600536807002656. ISSN   1600-5368.
  28. Ballirano, Paolo; Girolamo Belardi; Ferdinando Bosi (2007). "Redetermination of the Tutton's salt ". Acta Crystallographica Section E. 63 (7): i164–i165. doi:10.1107/S1600536807029790. ISSN   1600-5368.
  29. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 14. Retrieved June 17, 2013.
  30. 1 2 Simmons, Charles J.; Michael A. Hitchman; Horst Stratemeier; Arthur J. Schultz (1993). "High-pressure, low-temperature, single-crystal neutron diffraction study of deuterated and hydrogenous ammonium hexaaquacopper(II) sulfate (Tutton's salt): a pressure-switchable Jahn-Teller distortion". Journal of the American Chemical Society. 115 (24): 11304–11311. Bibcode:1993JAChS.11511304S. doi:10.1021/ja00077a032. ISSN   0002-7863.
  31. 1 2 3 "976 Diammonium hexaquacopper(ii) sulfate () (ICSD 62991)". openmopac. Retrieved 2 July 2015.
  32. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 72. Retrieved June 17, 2013.
  33. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 64. Retrieved 16 June 2013.
  34. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 14. Retrieved June 17, 2013.
  35. "Mohrite" (PDF). Mineral Data Publishing. Retrieved 17 June 2013.
  36. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 87. Retrieved 16 June 2013.
  37. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 54. Retrieved 16 June 2013.
  38. Somasekharam, V.; Y.P. Reddy (1985). "Spectroscopic studies on vanadyl ion in rubidium magnesium sulphate hexahydrate". Solid State Communications. 53 (8): 695–697. Bibcode:1985SSCom..53..695S. doi:10.1016/0038-1098(85)90380-1. ISSN   0038-1098.
  39. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1970). Standard X-ray Diffraction Powder Patterns: Section 8. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 70. Retrieved June 17, 2013.
  40. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 18. Retrieved June 17, 2013.
  41. Chand, Prem; R. Murali Krishna; J. Lakshmana Rao; S. V. J. Lakshman (1993). "EPR and optical studies of vanadyl complexes in two host-crystals of Tutton salts of thallium". Radiation Effects and Defects in Solids. 127 (2): 245–254. Bibcode:1993REDS..127..245C. doi:10.1080/10420159308220322. ISSN   1042-0150.
  42. "ICSD for WWW" . Retrieved 15 June 2013.
  43. Euler, H.; B. Barbier; S. Klumpp; A. Kirfel (2000). "Crystal structure of Tutton's salts, , " (PDF). Zeitschrift für Kristallographie. New Crystal Structures. 215 (4): 473–476. doi: 10.1515/ncrs-2000-0408 . ISSN   1433-7266 . Retrieved 15 June 2013.
  44. 1 2 Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 20. Retrieved June 17, 2013.
  45. Montgomery, H.; R. V. Chastain; E. C. Lingafelter (1966). "The crystal structure of Tutton's salts. V. Manganese ammonium sulfate hexahydrate". Acta Crystallographica. 20 (6): 731–733. Bibcode:1966AcCry..20..731M. doi: 10.1107/S0365110X66001762 . ISSN   0365-110X.
  46. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1970). Standard X-ray Diffraction Powder Patterns: Section 8. Data for 81 Substances (PDF). Washington D.C. p. 12. Retrieved June 17, 2013.{{cite book}}: CS1 maint: location missing publisher (link)
  47. Nalbandyan, V. B. (29 February 2012). "Thallium manganese sulfate hexahydrate, a missing Tutton's salt, and a brief review of the entire family". Powder Diffraction. 23 (1): 52–55. Bibcode:2008PDiff..23...52N. doi:10.1154/1.2840634. S2CID   97043497.
  48. 1 2 3 Wang, Xia; Xinxin Zhuang; Genbo Su; Youping He (2008). "A new ultraviolet filter: (RNSH) single crystal" (PDF). Optical Materials. 31 (2): 233–236. Bibcode:2008OptMa..31..233W. doi:10.1016/j.optmat.2008.03.020. ISSN   0925-3467.
  49. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 23. Retrieved June 17, 2013.
  50. Montgomery, H.; E.C. Lingafelter (10 November 1964). "The crystal structure of Tutton's salts. II. Magnesium ammonium sulfate hexahydrate and nickel ammonium sulfate hexahydrate". Acta Crystallographica. 17 (11). International Union of Crystallography: 1478. Bibcode:1964AcCry..17.1478M. doi: 10.1107/s0365110x6400367x .
  51. Morris, Marlene C; McMurdie, Howard F.; Evans, Eloise H.; Paretzkin, Boris; Hubbard, Camden R.; Carmel, Simon J. (1980). "Standard X-ray Diffraction Powder Patterns: Section 17. Data for 54 Substances". Final Report National Bureau of Standards. Bibcode:1980nbs..reptR....M.
  52. "The Monoclinic Double Sulphates Containing Ammonium. Completion of the Double Sulphate Series". January 1916.
  53. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 78. Retrieved June 17, 2013.
  54. 1 2 Bernhard, Paul; Ludi, Andreas (March 1984). "Infrared and Raman spectra of the hexaaquaruthenium ions: normal-coordinate analysis for and ". Inorganic Chemistry. 23 (7): 870–872. doi:10.1021/ic00175a015.
  55. Mido, M. Satake & Y.; Satake, M. (2010-01-01). Chemistry Of Transition Elements. Discovery Publishing House. p. 43. ISBN   9788171412433 . Retrieved 17 June 2013.
  56. Montgomery, H.; B. Morosin; J. J. Natt; A. M. Witkowska; E. C. Lingafelter (1967). "The crystal structure of Tutton's salts. VI. Vanadium(II), iron(II) and cobalt(II) ammonium sulfate hexahydrates". Acta Crystallographica. 22 (6): 775–780. Bibcode:1967AcCry..22..775M. doi: 10.1107/S0365110X67001550 . ISSN   0365-110X.
  57. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 43. Retrieved June 17, 2013.
  58. Lim, Ae Ran; Kim, Sun Ha (23 July 2015). "Structural and thermodynamic properties of Tutton salt K2Zn(SO4)2·6H2O". Journal of Thermal Analysis and Calorimetry. 123 (1): 371–376. doi:10.1007/s10973-015-4865-9. S2CID   93389171.
  59. Somasekharam, V; Prasad, P Siva; Ramesh, K; Reddy, Y P (1 February 1986). "Electronic Spectra of VO and Cu Ions in Rubidium Zinc Sulphate Hexahydrate". Physica Scripta. 33 (2): 169–172. Bibcode:1986PhyS...33..169S. doi:10.1088/0031-8949/33/2/014. S2CID   250762626.
  60. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 55. Retrieved June 17, 2013.
  61. Lakshmana Rao, J.; K. Purandar (1980). "Absorption spectrum of in zinc cesium sulphate hexahydrate". Solid State Communications. 33 (3): 363–364. Bibcode:1980SSCom..33..363L. doi:10.1016/0038-1098(80)91171-0. ISSN   0038-1098.
  62. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 25. Retrieved June 17, 2013.
  63. Voigt, W.; S. Göring (1994). "Melting of Tutton's salts studied by DSC". Thermochimica Acta. 237 (1): 13–26. Bibcode:1994TcAc..237...13V. doi:10.1016/0040-6031(94)85179-4. ISSN   0040-6031.
  64. Chand, Prem; Krishna, R. Murali; Rao, J. Lakshmana; Lakshman, S. V. J. (November 1993). "EPR and optical studies of vanadyl complexes in two host-crystals of Tutton salts of thallium". Radiation Effects and Defects in Solids. 127 (2): 245–254. Bibcode:1993REDS..127..245C. doi:10.1080/10420159308220322.
  65. Yankova, Rumyana; Genieva, Svetlana (June 2019). "Crystal structure and IR investigation of double salt Cs2Ni(SeO4)2·4H2O". Chemical Data Collections. 21: 100234. doi:10.1016/j.cdc.2019.100234. S2CID   181399910.
  66. Yankova, Rumyana (May 2020). "Hirshfeld surface analysis and ir investigation for the rubidium hexaaquacopper(II) selenate". Chemical Data Collections. 27: 100379. doi:10.1016/j.cdc.2020.100379. S2CID   218940437.
  67. Rekik, Walid; Naïli, Houcine; Mhiri, Tahar; Bataille, Thierry (April 2005). "Piperazinediium hexaaquazinc(II) bis(sulfate): A structural analogue of Tutton's salts". Acta Crystallographica Section E. 61 (4): m629. Bibcode:2005AcCrE..61M.629R. doi:10.1107/s1600536805005982.
  68. Colaneri, Michael J.; Teat, Simon J.; Vitali, Jacqueline (20 February 2020). "Electron Paramagnetic Resonance Characteristics and Crystal Structure of a Tutton Salt Analogue: Copper-Doped Cadmium Creatininium Sulfate". The Journal of Physical Chemistry A. 124 (11): 2242–2252. Bibcode:2020JPCA..124.2242C. doi:10.1021/acs.jpca.0c00004. OSTI   1777953. PMID   32078331. S2CID   211231042.