Twin reversed arterial perfusion

Last updated
Illustration of TRAPS pregnancy. On the left, the acardiac twin. The pump twin is on the right. Selective termination of the acardiac twin can reduce the risk of death of the pump twin. Acardiac twin.jpg
Illustration of TRAPS pregnancy. On the left, the acardiac twin. The pump twin is on the right. Selective termination of the acardiac twin can reduce the risk of death of the pump twin.

Twin reversed arterial perfusion sequence, also called TRAP sequence, TRAPS, or acardiac twinning, is a rare complication of monochorionic twin pregnancies. [1] It is a severe variant of twin-to-twin transfusion syndrome (TTTS). [2] In addition to the twins' blood systems being connected instead of independent, one twin, called the acardiac twin, TRAP fetus [3] or acardius, is severely malformed. The heart is missing or deformed, hence the name "acardiac", as are the upper structures of the body. The legs may be partially present or missing, and internal structures of the torso are often poorly formed. The other twin is usually normal in appearance. The normal twin, called the pump twin, drives blood through both fetuses. It is called "reversed arterial perfusion" because in the acardiac twin the blood flows in a reversed direction. [4] [5]

Contents

TRAP sequence occurs in 1% of monochorionic twin pregnancies and 1 in 35,000 pregnancies overall. [6]

Acardiac twin

X-ray of an acardiac fetus Acardiac.JPG
X-ray of an acardiac fetus

The acardiac twin is a parasitic twin that fails to properly develop a heart, and therefore generally does not develop the upper structures of the body. The parasitic twin, little more than a torso with or without legs, receives its blood supply from the host twin by means of an umbilical cord-like structure (which often only has 2 blood vessels, instead of 3), much like a fetus in fetu, except the acardiac twin is outside the host twin's body. Although the reason is not fully understood, it is apparent that deoxygenated blood from the pump twin is perfused to the acardiac twin. The acardiac twin grows along with the pump twin, but due to inadequate oxygenation it is unable to develop the structures necessary for life, and presents with dramatic deformities.

Although no two acardiac twins are alike, twins with this disorder are grouped into 4 classes: Acephalus, anceps, acormus, and amorphus.

Pump twin

Generally the pump twin is structurally normal, although it is smaller than normal. [2] Due to related problems including the rapid growth of the acardiac twin, polyhydramnios, umbilical cord entanglement and congestive heart failure due to high output, there is a high mortality rate for the pump twin if left untreated. The rate of fatality depends on the relative size of the acardiac twin. [5] If the abnormal twin is greater than 50% of the size of the pump twin, the survival rate for the pump twin is only 10%. [3]

Diagnosis

TRAP sequence can be diagnosed using obstetric ultrasound. [7] Doppler interrogation will confirm that blood flow in the acardiac twin is in the reverse direction, entering via the umbilical cord artery and exiting through the vein. [2]

Treatment

Treatment is selective termination of the acardiac twin. If left untreated, the pump twin will die in 50–75% of cases. [8]

After diagnosis, ultrasound and amniocentesis are used to rule out genetic abnormalities in the pump twin. [4] A procedure may then be performed which will stop the abnormal blood flow. The acardiac twin may be selectively removed. The umbilical cord of the acardiac twin may be surgically cut, separating it from the pump twin, a procedure called fetoscopic cord occlusion. [3] Or a radiofrequency ablation needle may be used to coagulate the blood in the acardiac twin's umbilical cord. This last procedure is the least invasive. [2] These procedures greatly increase the survival chances of the pump twin to about 80%. [9]

The pump twin will be monitored for signs of heart failure with echocardiograms. If the pump twin's condition deteriorates, the obstetrician may recommend early delivery. Otherwise, the pregnancy continues normally. Vaginal birth is possible unless the fetus is in distress, although it is recommended that the delivery take place at a hospital with NICU capabilities. [4]

Related Research Articles

<span class="mw-page-title-main">Amniocentesis</span> Sampling of amniotic fluid done mainly to detect fetal chromosomal abnormalities

Amniocentesis is a medical procedure used primarily in the prenatal diagnosis of genetic conditions. It has other uses such as in the assessment of infection and fetal lung maturity. Prenatal diagnostic testing, which includes amniocentesis, is necessary to conclusively diagnose the majority of genetic disorders, with amniocentesis being the gold-standard procedure after 15 weeks' gestation.

<span class="mw-page-title-main">Umbilical cord</span> Conduit between embryo/fetus and the placenta

In placental mammals, the umbilical cord is a conduit between the developing embryo or fetus and the placenta. During prenatal development, the umbilical cord is physiologically and genetically part of the fetus and normally contains two arteries and one vein, buried within Wharton's jelly. The umbilical vein supplies the fetus with oxygenated, nutrient-rich blood from the placenta. Conversely, the fetal heart pumps low-oxygen, nutrient-depleted blood through the umbilical arteries back to the placenta.

<span class="mw-page-title-main">Chorion</span> Outermost fetal membrane around the embryo in amniotes

The chorion is the outermost fetal membrane around the embryo in mammals, birds and reptiles (amniotes). It develops from an outer fold on the surface of the yolk sac, which lies outside the zona pellucida, known as the vitelline membrane in other animals. In insects, it is developed by the follicle cells while the egg is in the ovary. Some mollusks also have chorions as part of their eggs. For example, fragile octopus eggs have only a chorion as their envelope.

<span class="mw-page-title-main">Parasitic twin</span> Medical condition

A parasitic twin, also known as an asymmetrical twin or unequal conjoined twin, occurs when a twin embryo begins developing in utero, but the pair does not fully separate, and one embryo maintains dominant development at the expense of the other. It results from the same processes that also produces vanishing twins and conjoined twins, and may represent a continuum between the two. In parasitic twins, one ceases development during gestation and is vestigial to a mostly fully formed, otherwise healthy individual twin. The undeveloped twin is termed as parasitic, because it is incompletely formed or wholly dependent on the body functions of the complete fetus. The independent twin is called the autosite.

Acidosis is a process causing increased acidity in the blood and other body tissues. If not further qualified, it usually refers to acidity of the blood plasma.

<span class="mw-page-title-main">Selective reduction</span> Abortion of one or more (but not all) fetuses in a multiple pregnancy

Selective reduction is the practice of reducing the number of fetuses in a multiple pregnancy, such as quadruplets, to a twin or singleton pregnancy. The procedure is also called multifetal pregnancy reduction. The procedure is most commonly done to reduce the number of fetuses in a multiple pregnancy to a safe number, when the multiple pregnancy is the result of use of assisted reproductive technology; outcomes for both the mother and the babies are generally worse the higher the number of fetuses. The procedure is also used in multiple pregnancies when one of the fetuses has a serious and incurable disease, or in the case where one of the fetuses is outside the uterus, in which case it is called selective termination.

<span class="mw-page-title-main">Prenatal testing</span> Testing for diseases or conditions in a fetus

Prenatal testing is a tool that can be used to detect some birth defects at various stages prior to birth. Prenatal testing consists of prenatal screening and prenatal diagnosis, which are aspects of prenatal care that focus on detecting problems with the pregnancy as early as possible. These may be anatomic and physiologic problems with the health of the zygote, embryo, or fetus, either before gestation even starts or as early in gestation as practicable. Screening can detect problems such as neural tube defects, chromosome abnormalities, and gene mutations that would lead to genetic disorders and birth defects, such as spina bifida, cleft palate, Down syndrome, trisomy 18, Tay–Sachs disease, sickle cell anemia, thalassemia, cystic fibrosis, muscular dystrophy, and fragile X syndrome. Some tests are designed to discover problems which primarily affect the health of the mother, such as PAPP-A to detect pre-eclampsia or glucose tolerance tests to diagnose gestational diabetes. Screening can also detect anatomical defects such as hydrocephalus, anencephaly, heart defects, and amniotic band syndrome.

Oligohydramnios is a medical condition in pregnancy characterized by a deficiency of amniotic fluid, the fluid that surrounds the fetus in the abdomen, in the amniotic sac. It is typically diagnosed by ultrasound when the amniotic fluid index (AFI) measures less than 5 cm or when the single deepest pocket (SDP) of amniotic fluid measures less than 2 cm. Amniotic fluid is necessary to allow for normal fetal movement, lung development, and cushioning from uterine compression. Low amniotic fluid can be attributed to a maternal, fetal, placental or idiopathic cause and can result in poor fetal outcomes including death. The prognosis of the fetus is dependent on the etiology, gestational age at diagnosis, and the severity of the oligohydramnios.

<span class="mw-page-title-main">Twin-to-twin transfusion syndrome</span> Medical condition

Twin-to-twin transfusion syndrome (TTTS), also known as feto-fetal transfusion syndrome (FFTS), twin oligohydramnios-polyhydramnios sequence (TOPS) and stuck twin syndrome, is a complication of monochorionic multiple pregnancies in which there is disproportionate blood supply between the fetuses. This leads to unequal levels of amniotic fluid between each fetus and usually leads to death of the undersupplied twin and, without treatment, usually death or a range of birth defects or disabilities for a surviving twin, such as underdeveloped, damaged or missing limbs, digits or organs, especially cerebral palsy.

<span class="mw-page-title-main">Hydrops fetalis</span> Human disease of fetuses

Hydrops fetalis or hydrops foetalis is a condition in the fetus characterized by an accumulation of fluid, or edema, in at least two fetal compartments. By comparison, hydrops allantois or hydrops amnion is an accumulation of excessive fluid in the allantoic or amniotic space, respectively.

<span class="mw-page-title-main">Luteoma</span> Benign ovarian tumor

A luteoma is a tumor that occurs in the ovaries during pregnancy. It is associated with an increase of sex hormones, primarily progesterone and testosterone. The size of the tumor can range from 1 to 25 cm in diameter, but is usually 6 to 10 cm in diameter and can grow throughout the duration of the pregnancy. However, luteomas are benign and resolve themselves after delivery. This type of tumor is rare with only about 200 documented cases; many of these cases were detected accidentally, so the actual rate of occurrence may be higher. The most obvious symptom of a luteoma is masculinization of the mother and the possible masculinization of the fetus. This occurs because of the release of testosterone by the luteoma. Testosterone is a sex hormone most abundant in men although small amounts are naturally present in women. Testosterone is responsible for the male characteristics such as deepening of the voice, growth of dark hair, and acne. While not life-threatening, the development of male characteristics associated with luteomas can cause visible changes in the mother and can have drastic effects on the formation of the fetus. Luteomas can cause the fetus to be born with an ambiguous sex, which, depending on how the parents prefer to raise the infant, may result in the parents choosing a sex for the fetus.

<span class="mw-page-title-main">Percutaneous umbilical cord blood sampling</span>

Percutaneous umbilical cord blood sampling (PUBS), also called cordocentesis, fetal blood sampling, or umbilical vein sampling is a diagnostic genetic test that examines blood from the fetal umbilical cord to detect fetal abnormalities. Fetal and maternal blood supply are typically connected in utero with one vein and two arteries to the fetus. The umbilical vein is responsible for delivering oxygen rich blood to the fetus from the mother; the umbilical arteries are responsible for removing oxygen poor blood from the fetus. This allows for the fetus’ tissues to properly perfuse. PUBS provides a means of rapid chromosome analysis and is useful when information cannot be obtained through amniocentesis, chorionic villus sampling, or ultrasound ; this test carries a significant risk of complication and is typically reserved for pregnancies determined to be at high risk for genetic defect. It has been used with mothers with immune thrombocytopenic purpura.

<span class="mw-page-title-main">Velamentous cord insertion</span> Velamentous placenta

Velamentous cord insertion is a complication of pregnancy where the umbilical cord is inserted in the fetal membranes. It is a major cause of antepartum hemorrhage that leads to loss of fetal blood and associated with high perinatal mortality. In normal pregnancies, the umbilical cord inserts into the middle of the placental mass and is completely encased by the amniotic sac. The vessels are hence normally protected by Wharton's jelly, which prevents rupture during pregnancy and labor. In velamentous cord insertion, the vessels of the umbilical cord are improperly inserted in the chorioamniotic membrane, and hence the vessels traverse between the amnion and the chorion towards the placenta. Without Wharton's jelly protecting the vessels, the exposed vessels are susceptible to compression and rupture.

<span class="mw-page-title-main">Monoamniotic twins</span> Identical twins sharing the same amniotic sac in the womb

Monoamniotic twins are identical or semi-identical twins that share the same amniotic sac within their mother's uterus. Monoamniotic twins are always monochorionic and are usually termed Monoamniotic-Monochorionic twins. They share the placenta, but have two separate umbilical cords. Monoamniotic twins develop when an embryo does not split until after formation of the amniotic sac, at about 9–13 days after fertilization. Monoamniotic triplets or other monoamniotic multiples are possible, but extremely rare. Other obscure possibilities include multiples sets where monoamniotic twins are part of a larger gestation such as triplets, quadruplets, or more.

<span class="mw-page-title-main">Monochorionic twins</span> Identical twins that share the same placenta

Monochorionic twins are monozygotic (identical) twins that share the same placenta. If the placenta is shared by more than two twins, these are monochorionic multiples. Monochorionic twins occur in 0.3% of all pregnancies. Seventy-five percent of monozygotic twin pregnancies are monochorionic; the remaining 25% are dichorionic diamniotic. If the placenta divides, this takes place before the third day after fertilization.

<span class="mw-page-title-main">Circumvallate placenta</span> Medical condition

Circumvallate placenta is a rare condition affecting about 1-2% of pregnancies, in which the amnion and chorion fetal membranes essentially "double back" on the fetal side around the edges of the placenta. After delivery, a circumvallate placenta has a thick ring of membranes on its fetal surface. Circumvallate placenta is a placental morphological abnormality associated with increased fetal morbidity and mortality due to the restricted availability of nutrients and oxygen to the developing fetus.

<span class="mw-page-title-main">Single umbilical artery</span> Medical condition

Occasionally, there is a single umbilical artery (SUA) present in the umbilical cord, as opposed to the usual two. This is sometimes also called a two-vessel umbilical cord, or two-vessel cord. Approximately, this affects between 1 in 100 and 1 in 500 pregnancies, making it the most common umbilical abnormality. Its cause is not known.

<span class="mw-page-title-main">Twin anemia-polycythemia sequence</span> Medical condition

Twin anemia-polycythemia sequence(TAPS) is a chronic type of unbalanced fetal transfusion in monochorionic twins that results in polycythemia in the TAPS recipient and anemia in the TAPS donor due to tiny placental anastomoses. Post-laser TAPS and spontaneous TAPS are the two forms of TAPS. Unlike twin-twin transfusion syndrome, which arises when twin oligohydramnios polyhydramnios sequence (TOPS) is absent, TAPS develops in its absence.

The anomaly scan, also sometimes called the anatomy scan, 20-week ultrasound, or level 2 ultrasound, evaluates anatomic structures of the fetus, placenta, and maternal pelvic organs. This scan is an important and common component of routine prenatal care. The function of the ultrasound is to measure the fetus so that growth abnormalities can be recognized quickly later in pregnancy, to assess for congenital malformations and multiple pregnancies, and to plan method of delivery.

<span class="mw-page-title-main">Amorphous globosus</span> Malformation in veterinary medicine

An amorphus globosus, also known as a globosus amorphus, or an amorphus globosus monster, is a malformation occurring in veterinary medicine, especially in domestic cattle. Instead of a normally developed fetus, it results in the formation of a more or less spherical structure covered with hairy skin, which contains parts of all three germ layers; the differentiation of its contents can vary greatly. An amorphus globosus is not viable due to the lack of functional organs.

References

  1. Shulman, Lee P.; van Vugt, John M. G., eds. (2006). Prenatal medicine. Washington, DC: Taylor & Francis. p. 447. ISBN   0-8247-2844-0.
  2. 1 2 3 4 Knipe, Dr. Henry and Dr. Yuranga Weerakkody; et al. "Twin reversed arterial perfusion". Radiopaedia.org. Retrieved 18 February 2016.
  3. 1 2 3 "Twin Reversed Arterial Perfusion Sequence". C.S. Mott Children's Hospital. University of Michigan Health System. Retrieved 18 February 2016.
  4. 1 2 3 "Twin Reversed Arterial Perfusion Sequence". The Fetal Center. Children's Memorial Hermann Hospital. Retrieved 18 February 2016.
  5. 1 2 "TRAP Sequence or Acardiac Twin". The Fetal Treatment Center. UCSF Benioff Children's Hospital. Archived from the original on 28 October 2014. Retrieved 18 February 2016.
  6. Chandramouly M, Namitha (February 2009). "Case series: TRAP sequence". The Indian Journal of Radiology & Imaging. 19 (1): 81–3. doi: 10.4103/0971-3026.45352 . PMC   2747410 . PMID   19774147.
  7. Ünsal, Alparslan; Selda Demircan Sezer; İbrahim Meteoğlu; Kübra Temoçin; Can Zafer Karaman (December 2007). "Ultrasonographic prenatal diagnosis of isolated acephaly" (PDF). Diagnostic and Interventional Radiology. 13 (4): 196–198. PMID   18092292 . Retrieved 17 February 2013.
  8. "Twin Reversed Arterial Perfusion Sequence (TRAP Sequence)". The Children's Hospital of Philadelphia. 25 March 2014. Retrieved 18 February 2016.
  9. Beriwal, Sridevi; Impey, Lawrence; Ioannou, Christos (Oct 2020). "Multifetal pregnancy reduction and selective termination". The Obstetrician & Gynaecologist. 22 (4): 284–292. doi: 10.1111/tog.12690 . ISSN   1467-2561.