Ulla Hansen

Last updated
Ulla Hansen
Born
Ulla Hansen

Milwaukee, WI
(1953-02-10) 10 February 1953 (age 71)
CitizenshipUnited States
EducationPhD, Harvard University
OccupationBiologist
Website Ulla Hansen - Boston University Ulla Hansen - Lab website

Ulla Hansen is a professor emerita of biology at Boston University. Her research group focuses on the study of transcription factor LSF (also known as TFCP2). [1]

Contents

Biography

Hansen received her bachelor's degree in 1974 from Oberlin College and her Ph.D. in 1980 from Harvard University, where she worked with William R. McClure. She then held a postdoctoral fellowship at the Massachusetts Institute of Technology with Phillip A. Sharp. [2] She became an assistant professor at Harvard Medical School in 1983, and moved to the department of biology at Boston University in 1998. She served as associate chair of the department for five years and as the director of the Graduate Program of Molecular Biology, Biochemistry, and Cell Biology. [2]

Research

Hansen's research specialty is the mammalian cell cycle, in particular the role of transcription factors. She has concentrated on the LSF transcription factor, which is involved in oncogenesis. [1] [3] She has had a particular interest in LSF's role in liver cancer. [4] Hansen coauthored several heavily cited papers, including the review article "Active repression mechanisms of eukaryotic transcription repressors" [5] [6] [7] in Trends in Genetics.

Related Research Articles

<span class="mw-page-title-main">Transcription factor</span> Protein that regulates the rate of DNA transcription

In molecular biology, a transcription factor (TF) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are approximately 1600 TFs in the human genome. Transcription factors are members of the proteome as well as regulome.

E2F is a group of genes that encodes a family of transcription factors (TF) in higher eukaryotes. Three of them are activators: E2F1, 2 and E2F3a. Six others act as suppressors: E2F3b, E2F4-8. All of them are involved in the cell cycle regulation and synthesis of DNA in mammalian cells. E2Fs as TFs bind to the TTTCCCGC consensus binding site in the target promoter sequence.

<span class="mw-page-title-main">Sterol regulatory element-binding protein</span> Protein family

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that bind to the sterol regulatory element DNA sequence TCACNCCAC. Mammalian SREBPs are encoded by the genes SREBF1 and SREBF2. SREBPs belong to the basic-helix-loop-helix leucine zipper class of transcription factors. Unactivated SREBPs are attached to the nuclear envelope and endoplasmic reticulum membranes. In cells with low levels of sterols, SREBPs are cleaved to a water-soluble N-terminal domain that is translocated to the nucleus. These activated SREBPs then bind to specific sterol regulatory element DNA sequences, thus upregulating the synthesis of enzymes involved in sterol biosynthesis. Sterols in turn inhibit the cleavage of SREBPs and therefore synthesis of additional sterols is reduced through a negative feed back loop.

<span class="mw-page-title-main">Artificial transcription factor</span>

Artificial transcription factors (ATFs) are engineered individual or multi molecule transcription factors that either activate or repress gene transcription (biology).

<span class="mw-page-title-main">Jun dimerization protein</span> Protein-coding gene in the species Homo sapiens

Jun dimerization protein 2 (JUNDM2) is a protein that in humans is encoded by the JDP2 gene. The Jun dimerization protein is a member of the AP-1 family of transcription factors.

<span class="mw-page-title-main">Temple F. Smith</span> American academic

Temple Ferris Smith is an emeritus professor in biomedical engineering who helped to develop the Smith-Waterman algorithm with Michael Waterman in 1981. The Smith-Waterman algorithm serves as the basis for multi sequence comparisons, identifying the segment with the maximum local sequence similarity, see sequence alignment. This algorithm is used for identifying similar DNA, RNA and protein segments. He was director of the BioMolecular Engineering Research Center at Boston University for twenty years and is now professor emeritus.

<span class="mw-page-title-main">Corepressor</span> Molecule that represses the expression of genes

In genetics and molecular biology, a corepressor is a molecule that represses the expression of genes. In prokaryotes, corepressors are small molecules whereas in eukaryotes, corepressors are proteins. A corepressor does not directly bind to DNA, but instead indirectly regulates gene expression by binding to repressors.

<span class="mw-page-title-main">Small heterodimer partner</span> Protein-coding gene in the species Homo sapiens

The small heterodimer partner (SHP) also known as NR0B2 is a protein that in humans is encoded by the NR0B2 gene. SHP is a member of the nuclear receptor family of intracellular transcription factors. SHP is unusual for a nuclear receptor in that it lacks a DNA binding domain. Therefore, it is technically neither a transcription factor nor nuclear receptor but nevertheless it is still classified as such due to relatively high sequence homology with other nuclear receptor family members.

<span class="mw-page-title-main">CEBPB</span> Protein-coding gene in the species Homo sapiens

CCAAT/enhancer-binding protein beta is a protein that in humans is encoded by the CEBPB gene.

<span class="mw-page-title-main">TFCP2</span> Protein-coding gene in the species Homo sapiens

Alpha-globin transcription factor CP2 is a protein that in humans is encoded by the TFCP2 gene.

<span class="mw-page-title-main">ZBTB33</span> Protein-coding gene in the species Homo sapiens

Transcriptional regulator Kaiso is a protein that in humans is encoded by the ZBTB33 gene. This gene encodes a transcriptional regulator with bimodal DNA-binding specificity, which binds to methylated CGCG and also to the non-methylated consensus KAISO-binding site TCCTGCNA. The protein contains an N-terminal POZ/BTB domain and 3 C-terminal zinc finger motifs. It recruits the N-CoR repressor complex to promote histone deacetylation and the formation of repressive chromatin structures in target gene promoters. It may contribute to the repression of target genes of the Wnt signaling pathway, and may also activate transcription of a subset of target genes by the recruitment of catenin delta-2 (CTNND2). Its interaction with catenin delta-1 (CTNND1) inhibits binding to both methylated and non-methylated DNA. It also interacts directly with the nuclear import receptor Importin-α2, which may mediate nuclear import of this protein. Alternatively spliced transcript variants encoding the same protein have been identified.

<span class="mw-page-title-main">TBX3</span> Protein-coding gene in the species Homo sapiens

T-box transcription factor TBX3 is a protein that in humans is encoded by the TBX3 gene.

<span class="mw-page-title-main">KLF11</span> Protein-coding gene in the species Homo sapiens

Krueppel-like factor 11 is a protein that in humans is encoded by the KLF11 gene.

<span class="mw-page-title-main">Mark Ptashne</span> American molecular biologist

Mark Ptashne is a molecular biologist. He is the Ludwig Chair of Molecular Biology at Memorial Sloan–Kettering Cancer Center in New York City.

<span class="mw-page-title-main">TCF/LEF family</span> Group of genes

The TCF/LEF family is a group of genes that encode transcription factors which bind to DNA through a SOX-like high mobility group domain. They are involved in the Wnt signaling pathway, particularly during embryonic and stem-cell development, but also had been found to play a role in cancer and diabetes. TCF/LEF factors recruit the coactivator beta-catenin to enhancer elements of genes they target. They can also recruit members of the Groucho family of corepressors.

<span class="mw-page-title-main">FOXA1</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein A1 (FOXA1), also known as hepatocyte nuclear factor 3-alpha (HNF-3A), is a protein that in humans is encoded by the FOXA1 gene.

<span class="mw-page-title-main">FOXA2</span> Mammalian protein found in Homo sapiens

Forkhead box protein A2 (FOXA2), also known as hepatocyte nuclear factor 3-beta (HNF-3B), is a transcription factor that plays an important role during development, in mature tissues and, when dysregulated or mutated, also in cancer.

<span class="mw-page-title-main">Retinoblastoma protein</span> Mammalian protein found in Homo sapiens

The retinoblastoma protein is a tumor suppressor protein that is dysfunctional in several major cancers. One function of pRb is to prevent excessive cell growth by inhibiting cell cycle progression until a cell is ready to divide. When the cell is ready to divide, pRb is phosphorylated, inactivating it, and the cell cycle is allowed to progress. It is also a recruiter of several chromatin remodeling enzymes such as methylases and acetylases.

Pioneer factors are transcription factors that can directly bind condensed chromatin. They can have positive and negative effects on transcription and are important in recruiting other transcription factors and histone modification enzymes as well as controlling DNA methylation. They were first discovered in 2002 as factors capable of binding to target sites on nucleosomal DNA in compacted chromatin and endowing competency for gene activity during hepatogenesis. Pioneer factors are involved in initiating cell differentiation and activation of cell-specific genes. This property is observed in histone fold-domain containing transcription factors and other transcription factors that use zinc finger(s) for DNA binding.

<span class="mw-page-title-main">Roger Brent</span> American biologist

Roger Brent is an American biologist known for his work on gene regulation and systems biology. He studies the quantitative behaviors of cell signaling systems and the origins and consequences of variation in them. He is Full Member in the Division of Basic Sciences at the Fred Hutchinson Cancer Research Center and an Affiliate Professor of Genome Sciences at the University of Washington.

References

  1. 1 2 "Ulla Hansen". Boston University online. Retrieved 2021-06-06.
  2. 1 2 Hansen, Ulla (May 2019). "Curriculum Vitaee" (PDF). Retrieved 6 June 2021.
  3. "Research". Hansen Lab. 9 May 2019. Retrieved 6 June 2021.
  4. Friday, Leslie (11 April 2012). "Taking On Cancer: Tackling Liver Cancer in the Lab". BU Today. Boston University. Retrieved 6 June 2021.
  5. Xinsheng Nan; F.Javier Campoy; Adrian Bird (21 February 1997). "MeCP2 Is a Transcriptional Repressor with Abundant Binding Sites in Genomic Chromatin". Cell. 88 (4): 471–481. doi: 10.1016/S0092-8674(00)81887-5 . PMID   9038338.
  6. Gregory A. Wray; Matthew W. Hahn; Ehab Abouheif; James P. Balhoff; Margaret Pizer; Matthew V. Rockman; Laura A. Romano (1 April 2003). "The Evolution of Transcriptional Regulation in Eukaryotes". Molecular Biology and Evolution. 20 (9): 1377–1419. doi: 10.1093/molbev/msg140 . PMID   12777501.
  7. Fujimoto, Susan Y.; Ohta, Masaru; Usui, Akemi; Shinshi, Hideaki; Ohme-Takagi, Masaru (2000). "Arabidopsis Ethylene-Responsive Element Binding Factors Act as Transcriptional Activators or Repressors of GCC Box-Mediated Gene Expression". The Plant Cell Online . 12 (3): 393–404. doi:10.1105/tpc.12.3.393. PMC   139839 . PMID   10715325.