Uncertain inference

Last updated

Uncertain inference was first described by C. J. van Rijsbergen [1] as a way to formally define a query and document relationship in Information retrieval. This formalization is a logical implication with an attached measure of uncertainty.

Contents

Definitions

Rijsbergen proposes that the measure of uncertainty of a document d to a query q be the probability of its logical implication, i.e.:

A user's query can be interpreted as a set of assertions about the desired document. It is the system's task to infer, given a particular document, if the query assertions are true. If they are, the document is retrieved. In many cases the contents of documents are not sufficient to assert the queries. A knowledge base of facts and rules is needed, but some of them may be uncertain because there may be a probability associated to using them for inference. Therefore, we can also refer to this as plausible inference. The plausibility of an inference is a function of the plausibility of each query assertion. Rather than retrieving a document that exactly matches the query we should rank the documents based on their plausibility in regards to that query. Since d and q are both generated by users, they are error prone; thus is uncertain. This will affect the plausibility of a given query.

By doing this it accomplishes two things:

Multimedia documents, like images or videos, have different inference properties for each datatype. They are also different from text document properties. The framework of plausible inference allows us to measure and combine the probabilities coming from these different properties.

Uncertain inference generalizes the notions of autoepistemic logic, where truth values are either known or unknown, and when known, they are true or false.

Example

If we have a query of the form:

where A, B and C are query assertions, then for a document D we want the probability:

If we transform this into the conditional probability and if the query assertions are independent we can calculate the overall probability of the implication as the product of the individual assertions probabilities.

Further work

Croft and Krovetz [2] applied uncertain inference to an information retrieval system for office documents they called OFFICER. In office documents the independence assumption is valid since the query will focus on their individual attributes. Besides analysing the content of documents one can also query about the author, size, topic or collection for example. They devised methods to compare document and query attributes, infer their plausibility and combine it into an overall rating for each document. Besides that uncertainty of document and query contents also had to be addressed.

Probabilistic logic networks is a system for performing uncertain inference; crisp true/false truth values are replaced not only by a probability, but also by a confidence level, indicating the certitude of the probability.

Markov logic networks allow uncertain inference to be performed; uncertainties are computed using the maximum entropy principle, in analogy to the way that Markov chains describe the uncertainty of finite state machines.

See also

Related Research Articles

Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."

<span class="mw-page-title-main">Abductive reasoning</span> Inference seeking the simplest and most likely explanation

Abductive reasoning is a form of logical inference that seeks the simplest and most likely conclusion from a set of observations. It was formulated and advanced by American philosopher Charles Sanders Peirce beginning in the latter half of the 19th century.

<span class="mw-page-title-main">De Morgan's laws</span> Pair of logical equivalences

In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.

<span class="mw-page-title-main">Negation</span> Logical operation

In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition is the proposition whose proofs are the refutations of .

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle. Deduction is inference deriving logical conclusions from premises known or assumed to be true, with the laws of valid inference being studied in logic. Induction is inference from particular evidence to a universal conclusion. A third type of inference is sometimes distinguished, notably by Charles Sanders Peirce, contradistinguishing abduction from induction.

A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.

A Markov logic network (MLN) is a probabilistic logic which applies the ideas of a Markov network to first-order logic, enabling uncertain inference. Markov logic networks generalize first-order logic, in the sense that, in a certain limit, all unsatisfiable statements have a probability of zero, and all tautologies have probability one.

Probabilistic logic involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory. Source trust and epistemic uncertainty about the probabilities they provide, such as defined in subjective logic, are additional elements to consider. The need to deal with a broad variety of contexts and issues has led to many different proposals.

In information retrieval, Okapi BM25 is a ranking function used by search engines to estimate the relevance of documents to a given search query. It is based on the probabilistic retrieval framework developed in the 1970s and 1980s by Stephen E. Robertson, Karen Spärck Jones, and others.

A probabilistic logic network (PLN) is a conceptual, mathematical and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain logic such ideas as induction, abduction, analogy, fuzziness and speculation, and reasoning about time and causality.

Ranking of query is one of the fundamental problems in information retrieval (IR), the scientific/engineering discipline behind search engines. Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user. Ranking in terms of information retrieval is an important concept in computer science and is used in many different applications such as search engine queries and recommender systems. A majority of search engines use ranking algorithms to provide users with accurate and relevant results.

The Binary Independence Model (BIM) in computing and information science is a probabilistic information retrieval technique. The model makes some simple assumptions to make the estimation of document/query similarity probable and feasible.

The query likelihood model is a language model used in information retrieval. A language model is constructed for each document in the collection. It is then possible to rank each document by the probability of specific documents given a query. This is interpreted as being the likelihood of a document being relevant given a query.

Vector logic is an algebraic model of elementary logic based on matrix algebra. Vector logic assumes that the truth values map on vectors, and that the monadic and dyadic operations are executed by matrix operators. "Vector logic" has also been used to refer to the representation of classical propositional logic as a vector space, in which the unit vectors are propositional variables. Predicate logic can be represented as a vector space of the same type in which the axes represent the predicate letters and . In the vector space for propositional logic the origin represents the false, F, and the infinite periphery represents the true, T, whereas in the space for predicate logic the origin represents "nothing" and the periphery represents the flight from nothing, or "something".

<span class="mw-page-title-main">Bayesian programming</span> Statistics concept

Bayesian programming is a formalism and a methodology for having a technique to specify probabilistic models and solve problems when less than the necessary information is available.

<span class="mw-page-title-main">Probabilistic soft logic</span>

Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains. It is applicable to a variety of machine learning problems, such as collective classification, entity resolution, link prediction, and ontology alignment. PSL combines two tools: first-order logic, with its ability to succinctly represent complex phenomena, and probabilistic graphical models, which capture the uncertainty and incompleteness inherent in real-world knowledge. More specifically, PSL uses "soft" logic as its logical component and Markov random fields as its statistical model. PSL provides sophisticated inference techniques for finding the most likely answer (i.e. the maximum a posteriori (MAP) state). The "softening" of the logical formulas makes inference a polynomial time operation rather than an NP-hard operation.

ProbLog is a probabilistic logic programming language that extends Prolog with probabilities. It minimally extends Prolog by adding the notion of a probabilistic fact, which combines the idea of logical atoms and random variables. Similarly to Prolog, ProbLog can query an atom. While Prolog returns the truth value of the queried atom, ProbLog returns the probability of it being true.

References

  1. C. J. van Rijsbergen (1986), A non-classical logic for information retrieval (PDF), The Computer Journal, pp. 481–485
  2. W. B. Croft; R. Krovetz (1988), "Interactive retrieval office documents", Conference Sponsored by ACM SIGOIS and IEEECS TC-OA on Office information systems -, pp. 228–235, doi:10.1145/45410.45435, ISBN   0897912616, S2CID   16840138