Undercut procedure

Last updated

The undercut procedure is a procedure for fair item assignment between two people. It provably finds a complete envy-free item assignment whenever such assignment exists. It was presented by Brams and Kilgour and Klamler [1] and simplified and extended by Aziz. [2]

Contents

Assumptions

The undercut procedure requires only the following weak assumptions on the people:

It is not assumed that agents have responsive preferences.

Main idea

The undercut procedure can be seen as a generalization of the divide and choose protocol from a divisible resource to a resource with indivisibilities. The divide-and-choose protocol requires one person to cut the resource to two equal pieces. But, if the resource contains with indivisibilities, it may be impossible to make an exactly-equal cut. Accordingly, the undercut procedure works with almost-equal-cuts. An almost-equal-cut of a person is a partition of the set of items to two disjoint subsets (X,Y) such that:

Procedure

Each person reports all his almost-equal-cuts. There are two cases:

To prove the correctness of the procedure, it is sufficient to prove that in the Hard case, an envy-free allocation does not exist. Indeed, suppose there exists an envy-free allocation (X,Y). Since we are in the Hard case, (X,Y) is not an exactly-equal cut. So one person (e.g. George) strictly prefers Y to X, while the other person (Alice) weakly prefers X to Y. If (X,Y) is not an almost-equal-cut for Alice, then we move some items from X to Y, until we get a partition (X',Y') that is an almost-equal-cut for Alice. Alice still weakly prefers X' to Y'. By the monotonicity assumption, George still strictly prefers Y' to X'. This means that (X',Y') is not an almost-equal-cut for George. But in the Hard case, both agents have the same set of almost-equal-cuts - a contradiction.

Run-time complexity

In the worst case, the agents may have to evaluate all possible bundles, so the run-time might be exponential in the number of items.

This is not surprising, since the undercut procedure can be used to solve the partition problem: assume both agents have identical and additive valuations and run the undercut procedure; if it finds an envy-free allocation, then this allocation represents an equal partition. Since the partition problem is NP-complete, it probably cannot be solved by a polynomial-time algorithm.

Unequal entitlements

The undercut procedure can also work when the agents have unequal entitlements. [2] Suppose each agent is entitled to a fraction of the items, with being the other agent. Then, the definition of an almost-equal-cut (for agent ) should be changed as follows:

Generation phase

In the original publication, [1] the undercut procedure is preceded by the following generation phase:

The undercut procedure described above is then executed only on the contested pile.

This phase may make the division procedure more efficient: the contested pile may be smaller than the original set of items, so it may be easier to calculate and report the almost-equal-cuts.

AliceGeorge
w91
x84
y73
z62

However, the generation phase has several disadvantages: [2]

  1. It might make the procedure miss a possible envy-free allocation. For example, suppose there are four items and their valuations are as in the adjacent table. The allocation that gives {w,z} to Alice and {x,y} to George is envy-free. Indeed, it can be found by the bare undercut procedure, since the partition ({w,z}, {x,y}) is an almost-equal-cut for Alice but not for George, and George would accept this partition. But with the generation phase, initially Alice gets w and George gets x and the other items {y,z} are put in the contested pile, and there is no envy-free allocation of the contested pile, so the procedure fails.
  2. It requires the people to select their "best item" without knowing what other items they are going to receive. This relies on an assumption that the items are independent goods. Alternatively, it relies on a responsiveness assumption: if, in a bundle, an item is replaced by a better item, then the resulting bundle is better (it is closely related to weakly additive preferences).
  3. It does not work when the agents have unequal claims.
  4. It relies on sequential allocation, which is susceptible to strategic manipulation.

See also

Related Research Articles

Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. It is an active research area in mathematics, economics, dispute resolution, etc. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediator but certainly not an arbiter as only the players really know how they value the goods.

An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation.

Chore division is a fair division problem in which the divided resource is undesirable, so that each participant wants to get as little as possible. It is the mirror-image of the fair cake-cutting problem, in which the divided resource is desirable so that each participant wants to get as much as possible. Both problems have heterogeneous resources, meaning that the resources are nonuniform. In cake division, cakes can have edge, corner, and middle pieces along with different amounts of frosting. Whereas in chore division, there are different chore types and different amounts of time needed to finish each chore. Similarly, both problems assume that the resources are divisible. Chores can be infinitely divisible, because the finite set of chores can be partitioned by chore or by time. For example, a load of laundry could be partitioned by the number of articles of clothing and/or by the amount of time spent loading the machine. The problems differ, however, in the desirability of the resources. The chore division problem was introduced by Martin Gardner in 1978.

Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

The Brams–Taylor procedure (BTP) is a procedure for envy-free cake-cutting. It explicated the first finite procedure to produce an envy-free division of a cake among any positive integer number of players.

<span class="mw-page-title-main">Fair cake-cutting</span> Fair division problem

Fair cake-cutting is a kind of fair division problem. The problem involves a heterogeneous resource, such as a cake with different toppings, that is assumed to be divisible – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be unanimously fair – each person should receive a piece believed to be a fair share.

Efficient cake-cutting is a problem in economics and computer science. It involves a heterogeneous resource, such as a cake with different toppings or a land with different coverings, that is assumed to be divisible - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be economically efficient. Several notions of efficiency have been studied:

Group envy-freeness is a criterion for fair division. A group-envy-free division is a division of a resource among several partners such that every group of partners feel that their allocated share is at least as good as the share of any other group with the same size. The term is used particularly in problems such as fair resource allocation, fair cake-cutting and fair item allocation.

The fair pie-cutting problem is a variation of the fair cake-cutting problem, in which the resource to be divided is circular.

Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners i and j:

Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:

Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy.

Efficiency and fairness are two major goals of welfare economics. Given a set of resources and a set of agents, the goal is to divide the resources among the agents in a way that is both Pareto efficient (PE) and envy-free (EF). The goal was first defined by David Schmeidler and Menahem Yaari. Later, the existence of such allocations has been proved under various conditions.

Weller's theorem is a theorem in economics. It says that a heterogeneous resource ("cake") can be divided among n partners with different valuations in a way that is both Pareto-efficient (PE) and envy-free (EF). Thus, it is possible to divide a cake fairly without compromising on economic efficiency.

Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem.

In the fair cake-cutting problem, the partners often have different entitlements. For example, the resource may belong to two shareholders such that Alice holds 8/13 and George holds 5/13. This leads to the criterion of weighted proportionality (WPR): there are several weights that sum up to 1, and every partner should receive at least a fraction of the resource by their own valuation.

The AL procedure is a procedure for fair item assignment between two people. It finds an envy-free item assignment of a subset of the items. Moreover, the resulting allocation is Pareto efficient in the following sense: there is no other envy-free allocation which is better for one person and not worse for the other person.

Symmetric fair cake-cutting is a variant of the fair cake-cutting problem, in which fairness is applied not only to the final outcome, but also to the assignment of roles in the division procedure.

Round robin is a procedure for fair item allocation. It can be used to allocate several indivisible items among several people, such that the allocation is "almost" envy-free: each agent believes that the bundle he received is at least as good as the bundle of any other agent, when at most one item is removed from the other bundle. In sports, the round-robin procedure is called a draft.

Fair allocation of items and money is a class of fair item allocation problems in which, during the allocation process, it is possible to give or take money from some of the participants. Without money, it may be impossible to allocate indivisible items fairly. For example, if there is one item and two people, and the item must be given entirely to one of them, the allocation will be unfair towards the other one. Monetary payments make it possible to attain fairness, as explained below.

References

  1. 1 2 Brams, Steven J.; Kilgour, D. Marc; Klamler, Christian (2011). "The undercut procedure: An algorithm for the envy-free division of indivisible items" (PDF). Social Choice and Welfare. 39 (2–3): 615. doi:10.1007/s00355-011-0599-1. S2CID   253844146. Archived (PDF) from the original on 2017-08-12. Retrieved 2019-12-11.
  2. 1 2 3 Aziz, Haris (2015). "A note on the undercut procedure". Social Choice and Welfare. 45 (4): 723–728. arXiv: 1312.6444 . doi:10.1007/s00355-015-0877-4. S2CID   253842795.