This article needs editing to comply with Wikipedia's Manual of Style. In particular, it has problems with MOS:CONTRACTIONS and MOS:YOU.(November 2021) |
The envy-graph procedure (also called the envy-cycles procedure) is a procedure for fair item allocation. It can be used by several people who want to divide among them several discrete items, such as heirlooms, sweets, or seats in a class.
Ideally, we would like the allocation to be envy-free (EF). i.e., to give each agent a bundle that he/she prefers over the bundles of all other agents. However, the items are discrete and cannot be cut, so an envy-free assignment might be impossible (for example, consider a single item and two agents). The envy-graph procedure aims to achieve the "next-best" option -- envy-freeness up to at most a single good (EF1): it finds an allocation in which the envy of every person towards every other person is bounded by the maximum marginal utility it derives from a single item. In other words, for every two people i and j, there exists an item such that, if that item is removed, i does not envy j.
The procedure was presented by Lipton and Markakis and Mossel and Saberi [1] and it is also described in . [2] : 300–301
The envy-graph procedure assumes that each person has a cardinal utility function on bundles of items. This utility function has to be monotone (the utility of a set is at least as large as the utility of its subsets). However, it does not have to be additive. I.e, the items are not assumed to be independent goods.
The agents do not have to actually report their cardinal utility: it is sufficient that they know how to rank bundles.
In step 2, if there is no unenvied agent, it means that there is a directed cycle in the envy graph - a directed graph in which each agent points to all agents he envies. Cycles can be removed by cyclic exchange of bundles. After all cycles are removed, the envy-graph must have a node with no incoming edges; this node represents an unenvied agent.
The resulting allocation is not necessarily EF, but it is envy-free except one item. This is true not only in the final allocation but also in each intermediate allocation: since an item is always given to an unenvied agent, the envy of all other agents after that allocation is at most a single item.
Suppose there are m items. Each allocation of an item adds to the envy-graph at most n-1 edges. Hence, at most edges are added overall. Each cycle-removal removes at least two edges. Hence, we need to run the cycle-removal step at most times. Finding a cycle can be done in time using e.g. depth-first search. All in all, the run-time is .
In these examples the preferences go from 1-3 where the higher the number the higher the preference. Also a, b and c are people while X, Y and Z are objects.
1) With 3 people and 3 objects, every possible allocation will be a different result. This case happens when each of the three people have the same preferences. There are six different ways to allocate the objects:
X | Y | Z | |
---|---|---|---|
a | 3 | 2 | 1 |
b | 3 | 2 | 1 |
c | 3 | 2 | 1 |
In the beginning because no one has anything then all of them are unenvied agents and this is the same in all the cases. In case of a tie, we break ties between unenvied agents in lexicographic order.
2) With 3 people and 3 objects, every possible allocation will be the same result. This case happens when each of the three people have completely different preferences, because each person has something else they prefer no matter what they will get what they want.
X | Y | Z | |
---|---|---|---|
a | 3 | 2 | 1 |
b | 1 | 3 | 2 |
c | 2 | 1 | 3 |
There are six different ways to allocate the objects:
In the beginning because no one has anything then all of them are unenvied agents and this is the same in all the cases. In case of a tie, we break ties between unenvied agents in lexicographic order.
3) With 3 people and 3 objects, any other situation then the first and second example will give between 1 and 6 results. So for that to happen you just need at least two people to have same preference on one object or at most for two people to have different preferences on the same object.
X | Y | Z | |
---|---|---|---|
a | 3 | 2 | 1 |
b | 3 | 1 | 2 |
c | 1 | 2 | 3 |
There are six different ways to allocate the objects:
In the beginning because no one has anything then all of them are unenvied agents and this is the same in all the cases. In case of a tie, we break ties between unenvied agents in lexicographic order.
The envy-graph algorithm guarantees EF1 when the items are goods (- the marginal value of each item is positive for all agents). However, when there are both goods and chores, it does not guarantee EF1. An adaptation called generalized envy-graph guarantees EF1 even with a mixture of goods and chores. It works whenever the valuations are doubly-monotonic, that is: each agent can partition the items into two subsets: one subset contains goods (- items whose marginal utility is always positive) and the other contains chores (- items whose marginal utility is always negative). [3]
When agents have cardinality constraints (i.e., for each category of items, there is an upper bound on the number of items each agent an get from this category), the envy-graph algorithm might fail. However, combining it with the round-robin protocol gives an algorithm that finds allocations that are both EF1 and satisfy the cardinality constraints. [4]
When the agents have assignment valuations (aka OXS valuations), there is an extension of the envy-graph algorithm called "Algorithm H", in which the next allocation to an unenvied agent is selected such that agent-item utility is maximized. There is no formal proof to the properties of this algorithm, but it fares well on realistic data. [5]
An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation.
Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:
Efficiency and fairness are two major goals of welfare economics. Given a set of resources and a set of agents, the goal is to divide the resources among the agents in a way that is both Pareto efficient (PE) and envy-free (EF). The goal was first defined by David Schmeidler and Menahem Yaari. Later, the existence of such allocations has been proved under various conditions.
Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem.
Resource monotonicity is a principle of fair division. It says that, if there are more resources to share, then all agents should be weakly better off; no agent should lose from the increase in resources. The RM principle has been studied in various division problems.
Envy-free (EF) item allocation is a fair item allocation problem, in which the fairness criterion is envy-freeness - each agent should receive a bundle that they believe to be at least as good as the bundle of any other agent.
The undercut procedure is a procedure for fair item assignment between two people. It provably finds a complete envy-free item assignment whenever such assignment exists. It was presented by Brams and Kilgour and Klamler and simplified and extended by Aziz.
The AL procedure is a procedure for fair item assignment between two people. It finds an envy-free item assignment of a subset of the items. Moreover, the resulting allocation is Pareto efficient in the following sense: there is no other envy-free allocation which is better for one person and not worse for the other person.
Random priority (RP), also called Random serial dictatorship (RSD), is a procedure for fair random assignment - dividing indivisible items fairly among people.
A simultaneous eating algorithm(SE) is an algorithm for allocating divisible objects among agents with ordinal preferences. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies SD-efficiency - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for at least one vector of additive utility functions consistent with the agents' item rankings).
Egalitarian equivalence (EE) is a criterion of fair division. In an egalitarian-equivalent division, there exists a certain "reference bundle" such that each agent feels that his/her share is equivalent to .
Rank-maximal (RM) allocation is a rule for fair division of indivisible items. Suppose we have to allocate some items among people. Each person can rank the items from best to worst. The RM rule says that we have to give as many people as possible their best (#1) item. Subject to that, we have to give as many people as possible their next-best (#2) item, and so on.
Symmetric fair cake-cutting is a variant of the fair cake-cutting problem, in which fairness is applied not only to the final outcome, but also to the assignment of roles in the division procedure.
Maximin share (MMS) is a criterion of fair item allocation. Given a set of items with different values, the 1-out-of-n maximin-share is the maximum value that can be gained by partitioning the items into parts and taking the part with the minimum value. An allocation of items among agents with different valuations is called MMS-fair if each agent gets a bundle that is at least as good as his/her 1-out-of-n maximin-share. MMS fairness is a relaxation of the criterion of proportionality - each agent gets a bundle that is at least as good as the equal split ( of every resource). Proportionality can be guaranteed when the items are divisible, but not when they are indivisible, even if all agents have identical valuations. In contrast, MMS fairness can always be guaranteed to identical agents, so it is a natural alternative to proportionality even when the agents are different.
Round robin is a procedure for fair item allocation. It can be used to allocate several indivisible items among several people, such that the allocation is "almost" envy-free: each agent believes that the bundle he received is at least as good as the bundle of any other agent, when at most one item is removed from the other bundle. In sports, the round-robin procedure is called a draft.
When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.
Birkhoff's algorithm is an algorithm for decomposing a bistochastic matrix into a convex combination of permutation matrices. It was published by Garrett Birkhoff in 1946. It has many applications. One such application is for the problem of fair random assignment: given a randomized allocation of items, Birkhoff's algorithm can decompose it into a lottery on deterministic allocations.
In economics and computer science, Fractional Pareto efficiency or Fractional Pareto optimality (fPO) is a variant of Pareto efficiency used in the setting of fair allocation of discrete objects. An allocation of objects is called discrete if each item is wholly allocated to a single agent; it is called fractional if some objects are split among two or more agents. A discrete allocation is called Pareto-efficient (PO) if it is not Pareto-dominated by any discrete allocation; it is called fractionally Pareto-efficient (fPO) if it is not Pareto-dominated by any discrete or fractional allocation. So fPO is a stronger requirement than PO: every fPO allocation is PO, but not every PO allocation is fPO.
Fair allocation of items and money is a class of fair item allocation problems in which, during the allocation process, it is possible to give or take money from some of the participants. Without money, it may be impossible to allocate indivisible items fairly. For example, if there is one item and two people, and the item must be given entirely to one of them, the allocation will be unfair towards the other one. Monetary payments make it possible to attain fairness, as explained below.
Ordinal Pareto efficiency refers to several adaptations of the concept of Pareto-efficiency to settings in which the agents only express ordinal utilities over items, but not over bundles. That is, agents rank the items from best to worst, but they do not rank the subsets of items. In particular, they do not specify a numeric value for each item. This may cause an ambiguity regarding whether certain allocations are Pareto-efficient or not. As an example, consider an economy with three items and two agents, with the following rankings:
{{cite web}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: Cite journal requires |journal=
(help)