Unidirectional Link Detection

Last updated

Unidirectional Link Detection (UDLD) is a data link layer protocol from Cisco Systems to monitor the physical configuration of the cables and detect unidirectional links. UDLD complements the Spanning Tree Protocol which is used to eliminate switching loops.

  • Unidirectional Link Detection (UDLD) is one of two major features (UDLD and loop guard) in Cisco Switches to prevent Layer 2 loops.
  • Spanning-Tree Protocol (STP) resolves redundant physical topology into a loop-free, tree-like forwarding topology via blocking one or more ports.
However, Unidirectional Link failure can cause "traffic blackholing" and loops in the Switch topology.
  • In order to detect the unidirectional links before the forwarding loop is created, UDLD works by exchanging protocol packets between the neighboring devices.
  • In order for UDLD to work, both switch devices on the link must support UDLD and have it enabled on respective ports.

Description

If two devices, A and B, are connected via a pair of optical fibers, one used for sending from A to B and other for sending from B to A, the link is bidirectional (two-way). If one of these fibers is broken, the link has become one-way or unidirectional. The goal of the UDLD protocol is to detect a broken bidirectional link (e.g. transmitted packets do not arrive at the receiver, or the fibers are connected to different ports).

For each device and for each port, a UDLD packet is sent to the port it links to. The packet contains sender identity information (device and port), and expected receiver identity information (device and port). Each port checks that the UDLD packets it receives contain the identifiers of his own device and port.

UDLD is a Cisco-proprietary protocol but HP, Extreme Networks, and AVAYA all have a similar feature calling it by a different name. HP calls theirs Device Link Detection Protocol (DLDP). Extreme Networks call it Extreme Link Status Monitoring (ELSM) and AVAYA calls theirs, Link-state Tracking.

Similar functionality in a standardized form is provided as part of the Ethernet OAM protocol that is defined as part of the Ethernet in the First Mile changes to 802.3 (previously 802.3ah). D-Link has their DULD feature built on top of Ethernet OAM function. Brocade devices running Ironware support a proprietary form of UDLD.

The use of UDLD over 10GbE is augmented, as per 802.3ae/D3.2 standard, when a fault is detected in the physical link:

Related Research Articles

Ethernet Computer networking technology

Ethernet is a family of computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

Network topology Arrangement of the various elements of a computer network; topological structure of a network and may be depicted physically or logically

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

The Spanning Tree Protocol (STP) is a network protocol that builds a loop-free logical topology for Ethernet networks. The basic function of STP is to prevent bridge loops and the broadcast radiation that results from them. Spanning tree also allows a network design to include backup links providing fault tolerance if an active link fails.

A virtual LAN (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. LAN is the abbreviation for local area network and in this context virtual refers to a physical object recreated and altered by additional logic. VLANs work by applying tags to network frames and handling these tags in networking systems – creating the appearance and functionality of network traffic that is physically on a single network but acts as if it is split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and might provide the means to detect and possibly correct errors that may occur in the physical layer.

Medium access control Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. Within the data link layer, the LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

Ring network network topology

A ring network is a network topology in which each node connects to exactly two other nodes, forming a single continuous pathway for signals through each node - a ring. Data travels from node to node, with each node along the way handling every packet.

Link aggregation computer networking technology to increase throughput by using multiple connections in parallel

In computer networking, the term link aggregation refers to various methods of combining (aggregating) multiple network connections in parallel in order to increase throughput beyond what a single connection could sustain, and to provide redundancy in case one of the links should fail. A link aggregation group (LAG) is the collection of physical ports combined together.

Bidirectional Forwarding Detection (BFD) is a network protocol that is used to detect faults between two forwarding engines connected by a link. It provides low-overhead detection of faults even on physical media that doesn't support failure detection of any kind, such as Ethernet, virtual circuits, tunnels and MPLS Label Switched Paths.

EtherChannel

EtherChannel is a port link aggregation technology or port-channel architecture used primarily on Cisco switches. It allows grouping of several physical Ethernet links to create one logical Ethernet link for the purpose of providing fault-tolerance and high-speed links between switches, routers and servers. An EtherChannel can be created from between two and eight active Fast, Gigabit or 10-Gigabit Ethernet ports, with an additional one to eight inactive (failover) ports which become active as the other active ports fail. EtherChannel is primarily used in the backbone network, but can also be used to connect end user machines.

Bridging (networking) Device that creates a larger computer network from two smaller networks

A network bridge is a computer networking device that creates a single aggregate network from multiple communication networks or network segments. This function is called network bridging. Bridging is distinct from routing. Routing allows multiple networks to communicate independently and yet remain separate, whereas bridging connects two separate networks as if they were a single network. In the OSI model, bridging is performed in the data link layer. If one or more segments of the bridged network are wireless, the device is known as a wireless bridge.

IEEE 802.1ag is a standard defined by IEEE. It defines protocols and practices for OAM for paths through 802.1 bridges and local area networks (LANs). It is an amendment to IEEE 802.1Q-2005 and was approved in 2007.

Operations, administration and management or operations, administration and maintenance are the processes, activities, tools, and standards involved with operating, administering, managing and maintaining any system. This commonly applies to telecommunication, computer networks, and computer hardware.

Multi-link trunking

Multi-link trunking (MLT) is a link aggregation technology developed at Nortel in 1999. It allows grouping several physical Ethernet links into one logical Ethernet link to provide fault-tolerance and high-speed links between routers, switches, and servers.

InterSwitch Trunk (IST) is one or more parallel point-to-point links that connect two switches together to create a single logical switch. The IST allows the two switches to share addressing information, forwarding tables, and state information, permitting rapid fault detection and forwarding path modification. The link may have different names depending on the vendor. For example, Brocade calls this an Inter-Chassis Link (ICL). Cisco calls this a VSL.

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

Shortest Path Bridging (SPB), specified in the IEEE 802.1aq standard, is a computer networking technology intended to simplify the creation and configuration of networks, while enabling multipath routing.

TRILL is an Internet Standard implemented by devices called TRILL switches. TRILL combines techniques from bridging and routing and is the application of link-state routing to the VLAN-aware customer-bridging problem. RBridges are compatible with and can incrementally replace previous IEEE 802.1 customer bridges. They are also compatible with IPv4 and IPv6 routers and end nodes. They are invisible to current IP routers and, like routers, RBridges terminate the bridge spanning tree protocol.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.