Unified theory of acceptance and use of technology

Last updated

The unified theory of acceptance and use of technology (UTAUT) is a technology acceptance model formulated by Venkatesh and others in "User acceptance of information technology: Toward a unified view" in the organisational context. [1] [2] The UTAUT aims to explain user intentions to use an information system and subsequent usage behavior. The theory holds that there are four key constructs: 1) performance expectancy, 2) effort expectancy, 3) social influence, and 4) facilitating conditions.

Contents

The first three are direct determinants of usage intention and behavior, and the fourth is a direct determinant of user behavior. Gender, age, experience, and voluntariness of use are posited to moderate the impact of the four key constructs on usage intention and behavior. The theory was developed through a review and consolidation of the constructs of eight models that earlier research had employed to explain information systems usage behaviour (theory of reasoned action, technology acceptance model, motivational model, theory of planned behavior, a combined theory of planned behavior/technology acceptance model, model of personal computer use, diffusion of innovations theory, and social cognitive theory). Subsequent validation by Venkatesh et al. (2003) of UTAUT in a longitudinal study found it to account for 70% of the variance in Behavioural Intention to Use (BI) and about 50% in actual use. [1]

Venkatesh, Thong, and Xu (2012), extended the unified theory of acceptance and use of technology (UTAUT) to consumer context popularly known as UTAUT2 by incorporating three new constructs into UTAUT: hedonic motivation, price value, and habit [3] .

Application

Extension of the theory

Criticism

See also

References

  1. 1 2
  2. Menon, Devadas; Shilpa, K (November 2023). ""Chatting with ChatGPT": Analyzing the factors influencing users' intention to Use the Open AI's ChatGPT using the UTAUT model". Heliyon. 9 (11): e20962. Bibcode:2023Heliy...920962M. doi: 10.1016/j.heliyon.2023.e20962 . ISSN   2405-8440. PMC   10623159 . PMID   37928033.
  3. Venkatesh, Viswanath; Thong, James Y. L.; Xu, Xin (2012). "Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology". MIS Quarterly. 36 (1): 157–178. doi:10.2307/41410412. ISSN   0276-7783.
  4. Koivimäki, T.; Ristola, A.; Kesti, M. (2007). "The perceptions towards mobile services: An empirical analysis of the role of use facilitators". Personal and Ubiquitous Computing. 12 (1): 67–75. doi:10.1007/s00779-006-0128-x. S2CID   6089360.
  5. Eckhardt, A.; Laumer, S.; Weitzel, T. (2009). "Who influences whom? Analyzing workplace referents' social influence on IT adoption and non-adoption". Journal of Information Technology. 24 (1): 11–24. doi:10.1057/jit.2008.31. S2CID   42420244.
  6. Curtis, L.; Edwards, C.; Fraser, K. L.; Gudelsky, S.; Holmquist, J.; Thornton, K.; Sweetser, K. D. (2010). "Adoption of social media for public relations by nonprofit organizations". Public Relations Review. 36 (1): 90–92. doi:10.1016/j.pubrev.2009.10.003. S2CID   154466947.
  7. Verhoeven, J. C.; Heerwegh, D.; De Wit, K. (2010). "Information and communication technologies in the life of university freshmen: An analysis of change". Computers & Education. 55 (1): 53–66. doi:10.1016/j.compedu.2009.12.002.
  8. Welch, Ruel; Alade, Temitope; Nichol, Lynn (2020). "USING THE UNIFIED THEORY OF ACCEPTANCE AND USE OF TECHNOLOGY (UTAUT) MODEL TO DETERMINE FACTORS AFFECTING MOBILE LEARNING ADOPTION IN THE WORKPLACE: A STUDY OF THE SCIENCE MUSEUM GROUP" (PDF). International Journal on Computer Science and Information Systems. 15 (1): 85–98. Retrieved 4 June 2021.
  9. Williams, Michael D; Rana, Nripendra P; Dwivedi, Yogesh K (2015-01-01). "The unified theory of acceptance and use of technology (UTAUT): a literature review". Journal of Enterprise Information Management. 28 (3): 443–488. doi:10.1108/JEIM-09-2014-0088. ISSN   1741-0398.
  10. Lin, C.-P.; Anol, B. (2008). "Learning online social support: An investigation of network information technology". CyberPsychology & Behavior. 11 (3): 268–272. doi:10.1089/cpb.2007.0057. PMID   18537495.
  11. Sykes, T. A.; Venkatesh, V.; Gosain, S. (2009). "Model of acceptance with peer support: A social network perspective to understand employees' system use". MIS Quarterly. 33 (2): 371–393. doi:10.2307/20650296. JSTOR   20650296.
  12. Wang, Y.-S.; Wu, M.-C.; Wang, H.-Y. (2009). "Investigating the determinants and age and gender differences in the acceptance of mobile learning". British Journal of Educational Technology. 40 (1): 92–118. doi:10.1111/j.1467-8535.2007.00809.x. S2CID   7092931.
  13. Hewitt, Charlie; Politis, Ioannis; Amanatidis, Theocharis; Sarkar, Advait (2019-03-17). "Assessing public perception of self-driving cars". Proceedings of the 24th International Conference on Intelligent User Interfaces. Marina del Ray California: ACM. pp. 518–527. doi:10.1145/3301275.3302268. ISBN   978-1-4503-6272-6. S2CID   67773581.
  14. Wang, H.-W.; Wang, S.-H. (2010). "User acceptance of mobile Internet based on the Unified Theory of Acceptance and Use of Technology: Investigating the determinants and gender differences". Social Behavior & Personality. 38 (3): 415–426. doi:10.2224/sbp.2010.38.3.415.
  15. Chao, Cheng-Min (2019). "Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model". Frontiers in Psychology. 10: 1652. doi: 10.3389/fpsyg.2019.01652 . ISSN   1664-1078. PMC   6646805 . PMID   31379679.
  16. Cimperman, Miha; Makovec Brenčič, Maja; Trkman, Peter (2016-06-01). "Analyzing older users' home telehealth services acceptance behavior—applying an Extended UTAUT model". International Journal of Medical Informatics. 90: 22–31. doi:10.1016/j.ijmedinf.2016.03.002. ISSN   1386-5056. PMID   27103194.
  17. van Raaij, E. M.; Schepers, J. J. L. (2008). "The acceptance and use of a virtual learning environment in China". Computers & Education. 50 (3): 838–852. doi:10.1016/j.compedu.2006.09.001. S2CID   5676829.
  18. Li, Jerry (2020), "Blockchain technology adoption: Examining the Fundamental Drivers", Proceedings of the 2nd International Conference on Management Science and Industrial Engineering, ACM Publication, April 2020, pp. 253–260. doi : 10.1145/3396743.3396750