VLYNQ

Last updated

VLYNQ is a proprietary interface developed by Texas Instruments and used for broadband products, such as WLAN and modems, VOIP processors and audio and digital media processor chips. The chip implements a full-duplex serial communications interface that enables the extension of an internal bus segment to one or more external physical devices. The external devices are mapped into local, physical address space and appear as if they are on the internal bus. Multiple VLYNQ devices are daisy-chained, communication is peer-to-peer, host/peripheral. Data transferred over the VLYNQ interface is 8B/10B encoded and packetized.

Contents

VLYNQ is the name of a proprietary interface developed by Texas Instruments. It is used for TI's broadband products, such as modems and WLAN, voice broadband processors, digital media processors, and OMAP media processor chips. The ACX111 WLAN cards used in AR7 devices look like mini-PCI, but actually they are dual mode cards, that talk both, mini-PCI and VLYNQ. [1]

Details

The VLYNQ bus signals include 1 clock signal [CLK], and 1 to 8 Transmit lines [TX0 and TX1 ...], and 1 to 8 Receive lines [RX0 and RX1.....]. All VLYNQ signals are dedicated and driven by only one device. The transmit pins of one device connect to the receive lines of the next device. The VLYNQ bus will operate at a maximum clock speed of 125 MHz. However the actual clock speed is dependent on the physical device with the VLYNQ. So a device may have a clock speed other than 125 MHz. For example, a device may have an internal 100 MHz [maximum] clock rate, or external 80 MHz [maximum] clock rate.

When clocked at 125 MHz, a single T/R pair then delivers an effective data throughput of about 73 Mbit/s (for single, 32-bit word transfers), while a dual T/R pair implementation delivers 146 Mbit/s, and a maximum eight-channel version delivers 584 Mbit/s. In-band flow-control lets the interface independently throttle the transmit and receive data streams.

If data packets contain four or 16 words, some of the overhead is eliminated. So on a single channel, data bursts of four words per packet can deliver an effective throughput of 133 Mbit/s. With 16 words per packet, the throughput goes up to 178 Mbit/s. With the maximum eight channels, an effective throughput of over 1400 Mbit/s can be achieved with 16 words per packet. Both the direction and clock source may be software configurable [may be device dependent]. Software may also be used to set the internal clock speed [may be device dependent]. Unused clock lines are held high via an internal pull-up. Unused RX or TX lines may require an external 47k pull-down resistor [may be device dependent]. Software selectable internal pull-downs for signals may be provided on some devices.

Packet format

The packet format is:

SOP, 10 bits CMD1, 10 bits; or PktType, 10 bits CMD2, 10 bits; or AdMask, 10 bits ByteCnt, 10 bits Address, 10 bits [could be up to 4 words] Data, 10 bits [could be 'N' words long] EOP, 10 bits

8B/10B encoding

The IBM patented encoding method used for encoding 8-bit data bytes to 10-bit Transmission Characters. Data bytes are converted to Transmission Characters to improve the physical signal such that the following benefits are achieved: bit synchronization is more easily achieved, design of receivers and transmitters is simplified, error detection is improved, and control characters (i.e., the Special Character) can be distinguished from data characters.

Related Research Articles

DDR SDRAM Type of computer memory

Double Data Rate Synchronous Dynamic Random-Access Memory is a double data rate (DDR) synchronous dynamic random-access memory (SDRAM) class of memory integrated circuits used in computers. DDR SDRAM, also retroactively called DDR1 SDRAM, has been superseded by DDR2 SDRAM, DDR3 SDRAM, DDR4 SDRAM and DDR5 SDRAM. None of its successors are forward or backward compatible with DDR1 SDRAM, meaning DDR2, DDR3, DDR4 and DDR5 memory modules will not work in DDR1-equipped motherboards, and vice versa.

In general terms, throughput is the rate of production or the rate at which something is processed.

USB Industry standard peripheral connection

Universal Serial Bus (USB) is an industry standard that establishes specifications for cables and connectors and protocols for connection, communication and power supply (interfacing) between computers, peripherals and other computers. A broad variety of USB hardware exists, including eleven different connectors, of which USB-C is the most recent.

Fast Ethernet Ethernet standards that carry traffic at the nominal rate of 100 Mbit/s

In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common.

Synchronous dynamic random-access memory Type of computer memory

Synchronous dynamic random-access memory is any DRAM where the operation of its external pin interface is coordinated by an externally supplied clock signal.

I²C Serial communication bus

I2C (Inter-Integrated Circuit, eye-squared-C), alternatively known as I2C or IIC, is a synchronous, multi-master, multi-slave, packet switched, single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board communication.

HyperTransport (HT), formerly known as Lightning Data Transport (LDT), is a technology for interconnection of computer processors. It is a bidirectional serial/parallel high-bandwidth, low-latency point-to-point link that was introduced on April 2, 2001. The HyperTransport Consortium is in charge of promoting and developing HyperTransport technology.

PCI Express Computer expansion bus standard

PCI Express, officially abbreviated as PCIe or PCI-e, is a high-speed serial computer expansion bus standard, designed to replace the older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for personal computers' graphics cards, hard disk drive host adapters, SSDs, Wi-Fi and Ethernet hardware connections. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism, and native hot-swap functionality. More recent revisions of the PCIe standard provide hardware support for I/O virtualization.

GeoPort is a serial data system used on some models of the Apple Macintosh that could be externally clocked to run at a 2 Mbit/s data rate. GeoPort slightly modified the existing Mac serial port pins to allow the computer's internal DSP hardware or software to send data that, when passed to a digital-to-analog converter, emulated various devices such as modems and fax machines. GeoPort could be found on late-model 68K-based machines as well as many pre-USB Power Macintosh models and PiPPiN. Some later Macintosh models also included an internal GeoPort via an internal connector on the Communications Slot. Apple GeoPort technology is now obsolete, and modem support is typically offered through USB.

The Serial Peripheral Interface (SPI) is a synchronous serial communication interface specification used for short-distance communication, primarily in embedded systems. The interface was developed by Motorola in the mid-1980s and has become a de facto standard. Typical applications include Secure Digital cards and liquid crystal displays.

DECstation

The DECstation was a brand of computers used by DEC, and refers to three distinct lines of computer systems—the first released in 1978 as a word processing system, and the latter two both released in 1989. These comprised a range of computer workstations based on the MIPS architecture and a range of PC compatibles. The MIPS-based workstations ran Ultrix, a DEC-proprietary version of UNIX, and early releases of OSF/1.


Throughput of a network can be measured using various tools available on different platforms. This page explains the theory behind what these tools set out to measure and the issues regarding these measurements.

The media-independent interface (MII) was originally defined as a standard interface to connect a Fast Ethernet media access control (MAC) block to a PHY chip. The MII is standardized by IEEE 802.3u and connects different types of PHYs to MACs. Being media independent means that different types of PHY devices for connecting to different media can be used without redesigning or replacing the MAC hardware. Thus any MAC may be used with any PHY, independent of the network signal transmission media.

The System Packet Interface (SPI) family of Interoperability Agreements from the Optical Internetworking Forum specify chip-to-chip, channelized, packet interfaces commonly used in synchronous optical networking and Ethernet applications. A typical application of such a packet level interface is between a framer or a MAC and a network processor. Another application of this interface might be between a packet processor ASIC and a traffic manager device.

XDR DRAM is a high-performance dynamic random-access memory interface. It is based on and succeeds RDRAM. Competing technologies include DDR2 and GDDR4.

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that operates in the 2.4 GHz microwave band. The standard has extended throughput to up to 54 Mbit/s using the same 20MHz bandwidth as 802.11b uses to achieve 11 Mbit/s. This specification under the marketing name of Wi-Fi has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

LPDDR Computer hardware

LPDDR, an abbreviation for Low-Power Double Data Rate, also known as LPDDR SDRAM, is a type of synchronous dynamic random-access memory that consumes less power and is targeted for mobile computers. Older variants are also known as Mobile DDR, and abbreviated as mDDR.

I3C (bus)

MIPI I3C is a specification to enable communication between computer chips by defining the electrical connection between the chips and signaling patterns to be used. The standard defines the electrical connection between the chips to be a two wire, shared (multidrop), serial data bus, one wire (SCL) being used as a clock to define the sampling times, the other wire (SDA) being used as a data line whose voltage can be sampled. The standard defines a signalling protocol in which multiple chips can control communication and thereby act as the bus master.

This article provides information about the communications aspects of Universal Serial Bus, USB: Signaling, Protocols, Transactions.

References

TMS320DM644x DMSoC VLYNQ Port User's Guide for VLYNQ as implemented on one recent media processor