In mathematics, the value distribution theory of holomorphic functions is a division of mathematical analysis. The purpose of the theory is to provide quantitative measures of the number of times a function f(z) assumes a value a, as z grows in size, refining the Picard theorem on behaviour close to an essential singularity. The theory exists for analytic functions (and meromorphic functions) of one complex variable z, or of several complex variables.
In the case of one variable, the term Nevanlinna theory , after Rolf Nevanlinna, is also common. The now-classical theory received renewed interest when Paul Vojta suggested some analogies to the problem of integral solutions to Diophantine equations. These turned out to involve some close parallels and to lead to fresh points of view on the Mordell conjecture and related questions.
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.
In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series. Holomorphic functions are the central objects of study in complex analysis.
In mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x. When the base is clear from the context or is irrelevant it is sometimes written log x.
Rolf Herman Nevanlinna was a Finnish mathematician who made significant contributions to complex analysis.
Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions.
Lars Valerian Ahlfors was a Finnish mathematician, remembered for his work in the field of Riemann surfaces and his textbook on complex analysis.
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function.
In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was posed by Ludwig Bieberbach and finally proven by Louis de Branges.
In the mathematical field of complex analysis, Nevanlinna theory is part of the theory of meromorphic functions. It was devised in 1925, by Rolf Nevanlinna. Hermann Weyl called it "one of the few great mathematical events of (the twentieth) century." The theory describes the asymptotic distribution of solutions of the equation f(z) = a, as a varies. A fundamental tool is the Nevanlinna characteristic T(r, f) which measures the rate of growth of a meromorphic function.
In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f.
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.
In mathematics, the Schwarz alternating method or alternating process is an iterative method introduced in 1869–1870 by Hermann Schwarz in the theory of conformal mapping. Given two overlapping regions in the complex plane in each of which the Dirichlet problem could be solved, Schwarz described an iterative method for solving the Dirichlet problem in their union, provided their intersection was suitably well behaved. This was one of several constructive techniques of conformal mapping developed by Schwarz as a contribution to the problem of uniformization, posed by Riemann in the 1850s and first resolved rigorously by Koebe and Poincaré in 1907. It furnished a scheme for uniformizing the union of two regions knowing how to uniformize each of them separately, provided their intersection was topologically a disk or an annulus. From 1870 onwards Carl Neumann also contributed to this theory.
In mathematics, a function defined on a region of the complex plane is said to be of bounded type if it is equal to the ratio of two analytic functions bounded in that region. But more generally, a function is of bounded type in a region if and only if is analytic on and has a harmonic majorant on where . Being the ratio of two bounded analytic functions is a sufficient condition for a function to be of bounded type, and if is simply connected the condition is also necessary.
In mathematics, in the field of complex analysis, a Nevanlinna function is a complex function which is an analytic function on the open upper half-plane and has a non-negative imaginary part. A Nevanlinna function maps the upper half-plane to itself or a real constant, but is not necessarily injective or surjective. Functions with this property are sometimes also known as Herglotz, Pick or R functions.
Hà Huy Khoái is a Vietnamese mathematician working in complex analysis.
Maurice Haskell Heins was an American mathematician, specializing in complex analysis and harmonic analysis.
David Drasin is an American mathematician, specializing in function theory.
Georgii Nikolaevich Polozii was a Soviet mathematician who mostly worked in pure mathematics such as complex analysis, approximation theory and numerical analysis. He also worked on elasticity theory, which is used in applied math and physics. He was Corresponding Member of the Academy of Sciences of the Ukrainian SSR, Doctor of Physical and Mathematical Sciences (1953), Head of the Department of Computational Mathematics of the Kyiv Cybernetics Faculty University (1958).