Vibrio adaptatus

Last updated

Vibrio adaptatus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Vibrionales
Family: Vibrionaceae
Genus: Vibrio
Species:
V. adaptatus
Binomial name
Vibrio adaptatus

Vibrio adaptatus is the name given to a Gram-negative species of bacteria first described from the ocean by ZoBell and Upham in 1944. [1] It was later shown to be genetically very different from other species of Vibrio (which belongs to Gammaproteobacteria), suggesting it belongs in a different genus, [2] However, it has not been further studied and assigned to a genus, and remains an unclassified bacterial strain within the Alphaproteobacteria, [3] just like Vibrio cyclosites . [4] [5]

Related Research Articles

<span class="mw-page-title-main">Nucleolus</span> Largest structure in the nucleus of eukaryotic cells

The nucleolus is the largest structure in the nucleus of eukaryotic cells. It is best known as the site of ribosome biogenesis, which is the synthesis of ribosomes. The nucleolus also participates in the formation of signal recognition particles and plays a role in the cell's response to stress. Nucleoli are made of proteins, DNA and RNA, and form around specific chromosomal regions called nucleolar organizing regions. Malfunction of nucleoli can be the cause of several human conditions called "nucleolopathies" and the nucleolus is being investigated as a target for cancer chemotherapy.

<span class="mw-page-title-main">Ribosome</span> Intracellular organelle consisting of RNA and protein functioning to synthesize proteins

Ribosomes are macromolecular machines, found within all cells, that perform biological protein synthesis. Ribosomal RNA is found in the ribosomal nucleus where this synthesis happens. Ribosomes link amino acids together in the order specified by the codons of messenger RNA molecules to form polypeptide chains. Ribosomes consist of two major components: the small and large ribosomal subunits. Each subunit consists of one or more ribosomal RNA molecules and many ribosomal proteins. The ribosomes and associated molecules are also known as the translational apparatus.

<i>Vibrio</i> Genus of bacteria and the disease it can cause

Vibrio is a genus of Gram-negative bacteria, possessing a curved-rod (comma) shape, several species of which can cause foodborne infection, usually associated with eating undercooked seafood. Being highly salt tolerant and unable to survive in fresh water, Vibrio spp. are commonly found in various salt water environments. Vibrio spp. are facultative anaerobes that test positive for oxidase and do not form spores. All members of the genus are motile. They are able to have polar or lateral flagellum with or without sheaths. Vibrio species typically possess two chromosomes, which is unusual for bacteria. Each chromosome has a distinct and independent origin of replication, and are conserved together over time in the genus. Recent phylogenies have been constructed based on a suite of genes.

<span class="mw-page-title-main">Ribosomal DNA</span>

Ribosomal DNA (rDNA) is a DNA sequence that codes for ribosomal RNA. These sequences regulate transcription initiation and amplification, and contain both transcribed and non-transcribed spacer segments.

<span class="mw-page-title-main">Ribosomal RNA</span> RNA component of the ribosome, essential for protein synthesis in all living organisms

Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal DNA (rDNA) and then bound to ribosomal proteins to form small and large ribosome subunits. rRNA is the physical and mechanical factor of the ribosome that forces transfer RNA (tRNA) and messenger RNA (mRNA) to process and translate the latter into proteins. Ribosomal RNA is the predominant form of RNA found in most cells; it makes up about 80% of cellular RNA despite never being translated into proteins itself. Ribosomes are composed of approximately 60% rRNA and 40% ribosomal proteins by mass.

<span class="mw-page-title-main">Alphaproteobacteria</span> Class of bacteria

Alphaproteobacteria is a class of bacteria in the phylum Pseudomonadota. The Magnetococcales and Mariprofundales are considered basal or sister to the Alphaproteobacteria. The Alphaproteobacteria are highly diverse and possess few commonalities, but nevertheless share a common ancestor. Like all Proteobacteria, its members are gram-negative and some of its intracellular parasitic members lack peptidoglycan and are consequently gram variable.

Mycobacterium farcinogenes is a species of the phylum Actinomycetota, belonging to the genus Mycobacterium.

<span class="mw-page-title-main">5S ribosomal RNA</span> RNA component of the large subunit of the ribosome

The 5S ribosomal RNA is an approximately 120 nucleotide-long ribosomal RNA molecule with a mass of 40 kDa. It is a structural and functional component of the large subunit of the ribosome in all domains of life, with the exception of mitochondrial ribosomes of fungi and animals. The designation 5S refers to the molecule's sedimentation velocity in an ultracentrifuge, which is measured in Svedberg units (S).

<span class="mw-page-title-main">Prokaryotic large ribosomal subunit</span>

50S is the larger subunit of the 70S ribosome of prokaryotes, i.e. bacteria and archaea. It is the site of inhibition for antibiotics such as macrolides, chloramphenicol, clindamycin, and the pleuromutilins. It includes the 5S ribosomal RNA and 23S ribosomal RNA.

<span class="mw-page-title-main">23S ribosomal RNA</span> A component of the large subunit of the prokaryotic ribosome

The 23S rRNA is a 2,904 nucleotide long component of the large subunit (50S) of the bacterial/archean ribosome and makes up the peptidyl transferase center (PTC). The 23S rRNA is divided into six secondary structural domains titled I-VI, with the corresponding 5S rRNA being considered domain VII. The ribosomal peptidyl transferase activity resides in domain V of this rRNA, which is also the most common binding site for antibiotics that inhibit translation, making it a target for ribosomal engineering. A well-known member of this antibiotic class, chloramphenicol, acts by inhibiting peptide bond formation, with recent 3D-structural studies showing two different binding sites depending on the species of ribosome. Numerous mutations in domains of the 23S rRNA with Peptidyl transferase activity have resulted in antibiotic resistance. 23S rRNA genes typically have higher sequence variations, including insertions and/or deletions, compared to other rRNAs.

<span class="mw-page-title-main">60S ribosomal protein L5</span> Protein found in humans

60S ribosomal protein L5 is a protein that in humans is encoded by the RPL5 gene.

<span class="mw-page-title-main">Mitochondrial ribosomal protein L1</span> Protein-coding gene in the species Homo sapiens

39S ribosomal protein L1, mitochondrial is a protein that in humans is encoded by the MRPL1 gene.

<span class="mw-page-title-main">MRPS5</span> Protein-coding gene in the species Homo sapiens

28S ribosomal protein S5, mitochondrial, otherwise called uS5m, is a protein that in humans is encoded by the MRPS5 gene.

<span class="mw-page-title-main">Yfr2</span> Family of non-coding RNAs

Yfr2 is a family of non-coding RNAs. Members of the Yrf2 family have been identified in almost all studied species of cyanobacteria. The family was identified through a bioinformatics screen of published cyanobacterial genomes, having previously been grouped in a family of Yfr2–5.

Bacterial taxonomy is subfield of taxonomy devoted to the classification of bacteria specimens into taxonomic ranks.

<span class="mw-page-title-main">Mitochondrial ribosomal protein L3</span> Protein-coding gene in the species Homo sapiens

Mitochondrial ribosomal protein L3 is a protein that in humans is encoded by the MRPL3 gene.

<span class="mw-page-title-main">MRPS2</span> Protein-coding gene in the species Homo sapiens

Mitochondrial ribosomal protein S2 (MRPS2), otherwise known as uS2m, is a protein that in humans is encoded by the MRPS2 gene.

<span class="mw-page-title-main">MRPS9</span> Protein-coding gene in the species Homo sapiens

Mitochondrial ribosomal protein S9 (MRPS9), otherwise known as uS9m, is a protein that in humans is encoded by the MRPS9 gene.

Thermodesulfobacterium hveragerdense is a bacterial species belonging to genus Thermodesulfobacterium, which are thermophilic sulfate-reducing bacteria. This species is found in aquatic areas of high temperature, and lives in freshwater like most, but not all Thermodesulfobacterium species It was first isolated from hotsprings in Iceland.

<i>Photobacterium damselae <span style="font-style:normal;">subsp.</span> damselae</i> Subspecies of rod-shaped bacterium

Photobacterium damselae subsp. damselae is a halophilic gram-negative rod-shaped bacterium. Commonly found in marine environments, P.d. subsp. damselae can cause disease in many species marine wildlife and is an emerging threat in aquaculture. In humans Photobacterium damselae subsp. damselae can cause severe infections.The type strain of Photobacterium damselae subsp damselae is ATCC 33539T.

References

  1. "Vibrio adaptatus ZoBell and Upham (ATCC 19263)". ATCC. Retrieved 11 March 2018.
  2. Muir, David; Hiroshi, Hori; Ortiz-Conde, Betty; Anikis, Michael; Colwell, Rita (1990). "5S ribosomal RNA sequences of Vibrio adaptatus, V. cyclosites, V. hollisae and V. neocistes; three of these eubacteria may not be true members of the Vibrionaceae". Nucleic Acids Research. 18 (6): 1636. doi:10.1093/nar/18.6.1636. PMC   330542 .
  3. "Unclassified Bacterium". DSMZ. Retrieved 11 March 2018.
  4. Vibrio cyclosites 5S ribosomal RNA, on: NCBI GenBank
  5. Taxonomy - Vibrio cyclosites (SPECIES), on: UniProt