Vicky Pope

Last updated

Vicky Pope is a scientist and the former head of the climate predictions programme at the Hadley Centre. [1]

Contents

Biography

Pope attended North London Collegiate School. [2] She joined the Met Office in the 1980s and went on to complete a PhD in Meteorology at the University of Reading. [3]

She spent 6 years as manager of atmospheric climate model development and evaluation. She became a senior manager of the climate research programme for a number of UK Government departments in 2002. [3] Since October 2004 she was Head of the Climate Prediction Programme which provides independent scientific advice on climate change. Her research interests include developing and validating climate models.

She is a professor at Gresham College, and an honorary professor at University College London. [4] [5]

The Impact of Climate Change on Vulnerable Countries (3594428277).jpg

In an article for The Guardian newspaper, she wrote: "Having to rein in extraordinary claims that the latest extreme event is all due to climate change is at best hugely frustrating and at worse enormously distracting. Overplaying natural variations in the weather as climate change is just as much a distortion of science as underplaying them to claim that climate change has stopped or is not happening."

She added: "Both undermine the basic facts that the implications of climate change are profound and will be severe if greenhouse gas emissions are not cut drastically." [6]

Publications

Selected newspaper and web articles 2007-2013

Related Research Articles

Keith Peter Shine FRS is the Regius Professor of Meteorology and Climate Science at the University of Reading. He is the first holder of this post, which was awarded to the university by Queen Elizabeth II to mark her Diamond Jubilee.

<span class="mw-page-title-main">Tropopause</span> The boundary of the atmosphere between the troposphere and stratosphere

The tropopause is the atmospheric boundary that demarcates the troposphere from the stratosphere, which are the lowest two of the five layers of the atmosphere of Earth. The tropopause is a thermodynamic gradient-stratification layer that marks the end of the troposphere, and is approximately 17 kilometres (11 mi) above the equatorial regions, and approximately 9 kilometres (5.6 mi) above the polar regions.

A sudden stratospheric warming (SSW) is an event in which polar stratospheric temperatures rise by several tens of kelvins over the course of a few days. The warming is preceded by a slowing then reversal of the westerly winds in the stratospheric polar vortex. SSWs occur about six times per decade in the northern hemisphere, and about once every 20-30 years in the southern hemisphere. Only two southern SSWs have been observed.

Richard Siegmund Lindzen is an American atmospheric physicist known for his work in the dynamics of the middle atmosphere, atmospheric tides, and ozone photochemistry. He is the author of more than 200 scientific papers. From 1972 to 1982, he served as the Gordon McKay Professor of Dynamic Meteorology at Harvard University. In 1983, he was appointed as the Alfred P. Sloan Professor of Meteorology at the Massachusetts Institute of Technology, where he would remain until his retirement in 2013. Lindzen has disputed the scientific consensus on climate change and criticizes what he has called "climate alarmism".

<span class="mw-page-title-main">Polar vortex</span> Persistent cold-core low-pressure area that circles one of the poles

A circumpolar vortex, or simply polar vortex, is a large region of cold, rotating air that encircles both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.

<span class="mw-page-title-main">Numerical weather prediction</span> Weather prediction using mathematical models of the atmosphere and oceans

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.

<span class="mw-page-title-main">Ensemble forecasting</span> Multiple simulation method for weather forecasting

Ensemble forecasting is a method used in or within numerical weather prediction. Instead of making a single forecast of the most likely weather, a set of forecasts is produced. This set of forecasts aims to give an indication of the range of possible future states of the atmosphere. Ensemble forecasting is a form of Monte Carlo analysis. The multiple simulations are conducted to account for the two usual sources of uncertainty in forecast models: (1) the errors introduced by the use of imperfect initial conditions, amplified by the chaotic nature of the evolution equations of the atmosphere, which is often referred to as sensitive dependence on initial conditions; and (2) errors introduced because of imperfections in the model formulation, such as the approximate mathematical methods to solve the equations. Ideally, the verified future atmospheric state should fall within the predicted ensemble spread, and the amount of spread should be related to the uncertainty (error) of the forecast. In general, this approach can be used to make probabilistic forecasts of any dynamical system, and not just for weather prediction.

<span class="mw-page-title-main">Atmospheric model</span> Mathematical model of atmospheric motions

In atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes, heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion. They can predict microscale phenomena such as tornadoes and boundary layer eddies, sub-microscale turbulent flow over buildings, as well as synoptic and global flows. The horizontal domain of a model is either global, covering the entire Earth, or regional (limited-area), covering only part of the Earth. The different types of models run are thermotropic, barotropic, hydrostatic, and nonhydrostatic. Some of the model types make assumptions about the atmosphere which lengthens the time steps used and increases computational speed.

Teleconnection in atmospheric science refers to climate anomalies being related to each other at large distances. The most emblematic teleconnection is that linking sea-level pressure at Tahiti and Darwin, Australia, which defines the Southern Oscillation. Another well-known teleconnection links the sea-level pressure over Iceland with the one over the Azores, traditionally defining the North Atlantic Oscillation (NAO).

<span class="mw-page-title-main">André Robert</span> Canadian meteorologist

Dr. André Robert was a Canadian meteorologist who pioneered the modelling the Earth's atmospheric circulation.

<span class="mw-page-title-main">Brewer–Dobson circulation</span> Atmospheric circulation pattern

Brewer–Dobson circulation refers to the global atmospheric circulation pattern of tropical tropospheric air rising into the stratosphere and then moving poleward as it descends. The basics of the circulation were first proposed by Gordon Dobson and Alan Brewer. The term "Brewer–Dobson circulation" was first introduced in 1963. This circulation pattern explains observations of ozone and water vapor distribution, and has been accelerating in recent decades, likely due to climate change.

An atmospheric reanalysis is a meteorological and climate data assimilation project which aims to assimilate historical atmospheric observational data spanning an extended period, using a single consistent assimilation scheme throughout.

<span class="mw-page-title-main">Joanna Haigh</span> British physicist

Joanna Dorothy Haigh is a British physicist and academic. Before her retirement in 2019 she was Professor of Atmospheric Physics at Imperial College London, and co-director of the Grantham Institute – Climate Change and Environment. She served as head of the department of physics at Imperial College London. She is a Fellow of the Royal Society (FRS), and a served as president of the Royal Meteorological Society.

<span class="mw-page-title-main">Julia Slingo</span> British meteorologist

Julia Mary Slingo is a British meteorologist and climate scientist. She was Chief Scientist at the Met Office from 2009 until 2016. She is also a visiting professor in the Department of Meteorology at the University of Reading, where she held, prior to appointment to the Met Office, the positions of Director of Climate Research in the Natural Environment Research Council (NERC) National Centre for Atmospheric Science and founding director of the Walker Institute for Climate System Research.

The North American Ensemble Forecast System (NAEFS) is a joint project involving the Meteorological Service of Canada (MSC) in Canada, the National Weather Service (NWS) in the United States, and the National Meteorological Service of Mexico (NMSM) in Mexico providing numerical weather prediction ensemble guidance for the 1- to 16-day forecast period. The NAEFS combines the Canadian MSC and the US NWS global ensemble prediction systems, improving probabilistic operational guidance over what can be built from any individual country's ensemble. Model guidance from the NAEFS is incorporated into the forecasts of the respective national agencies.

Adam A. Scaife FRMetS FInstP is a British physicist and head of long range prediction at the Met Office. He is also a professor at Exeter University. Scaife carries out research into long range weather forecasting and computer modelling of the climate and has published over 250 peer reviewed studies on atmospheric dynamics, computer modelling and climate as well as popular science and academic books on meteorology.

Tiffany Shaw is a geophysical scientist from Canada. She is currently an associate professor at the University of Chicago. She is known for her extensive contributions to the geophysical and atmospheric sciences.

M. Joan Alexander is an atmospheric scientist known for her research on gravity waves and their role in atmospheric circulation.

William Christopher Swinbank was a British-born meteorological physicist who worked at the UK Meteorological Office, the CSIRO Australia and the NCAR Colorado. His main areas of research were fog prediction, upper atmosphere analysis, wind predictions, hail storms and turbulent fluxes.

References

  1. Salazar, Jorge (May 10, 2010). "Vicky Pope responds to critics of computer models for climate". EarthSky.org. Retrieved 2021-05-05.
  2. "StackPath". www.nlcs.org.uk. Retrieved 2022-06-30.
  3. 1 2 "Iris View Profile". iris.ucl.ac.uk. Retrieved 2022-06-30.
  4. "Vicky Pope". Gresham College. Retrieved 2021-05-05.
  5. "Climate Resilience and Sustainability". Royal Meteorological Society (RMetS). Retrieved 2021-05-05.
  6. Adam, David (2009-02-11). "Apocalyptic predictions' mislead the public on climate change, say experts". The Guardian. Retrieved 2021-05-05.