Viewing angle

Last updated

In display technology parlance, viewing angle is the angle at which a display can be viewed with an acceptable visual performance. In a technical context, the angular range is called viewing cone defined by a multitude of viewing directions. The viewing angle can be an angular range over which the display view is acceptable, [1] or it can be the angle of generally acceptable viewing, such as a twelve o'clock viewing angle for a display optimized or viewing from the top. [2]

The image may seem garbled, poorly saturated, of poor contrast, blurry, or too faint outside the stated viewing angle range, the exact mode of "failure" depends on the display type in question. For example, some projection screens reflect more light perpendicular to the screen and less light to the sides, making the screen appear much darker (and sometimes colors distorted) if the viewer is not in front of the screen. Many manufacturers of projection screens thus define the viewing angle as the angle at which the luminance of the image is exactly half of the maximum. With LCD screens, some manufacturers have opted to measure the contrast ratio and report the viewing angle as the angle where the contrast ratio exceeds 5:1 or 10:1, giving minimally acceptable viewing conditions.

The viewing angle is measured from one direction to the opposite, giving a maximum of 180° for a flat, one-sided screen. A display may exhibit different behavior in horizontal and vertical axes, requiring users and manufacturers to specify maximum usable viewing angles in both directions. Usually, the screens are designed to facilitate greater viewing angles at the horizontal level, and smaller angles at the vertical level, should the two of them differ in magnitude.

The viewing angle for some displays is specified in only a general direction, such as 6 o'clock or 12 o'clock.

Early LCDs had strikingly narrow viewing cones, a situation that has been improved with current technology.

Narrow viewing cones of some types of displays have also been used to bring a measure of security in businesses, where employees handle private information in the presence of customers, banks being one example. Rectangular privacy filters fitting to the computer monitors have also been sold as accessories.

LEDs

LEDs are measured so that the line along half the viewing angle from directly forward is half the brightness as at directly forward.

Related Research Articles

<span class="mw-page-title-main">Computer monitor</span> Computer output device

A computer monitor is an output device that displays information in pictorial or textual form. A discrete monitor comprises a visual display, support electronics, power supply, housing, electrical connectors, and external user controls.

<span class="mw-page-title-main">Liquid-crystal display</span> Display that uses the light-modulating properties of liquid crystals

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images or fixed images with low information content, which can be displayed or hidden: preset words, digits, and seven-segment displays are all examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

<span class="mw-page-title-main">Polarization (physics)</span> Property of waves that can oscillate with more than one orientation

Polarization is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves in solids.

Computer display standards are a combination of aspect ratio, display size, display resolution, color depth, and refresh rate. They are associated with specific expansion cards, video connectors, and monitors.

<span class="mw-page-title-main">Plasma display</span> Type of flat panel display

A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large flat panel displays to be released to the public.

<span class="mw-page-title-main">Display resolution</span> Number of distinct pixels in each dimension that can be displayed

The display resolution or display modes of a digital television, computer monitor or display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.

A television set or television receiver, more commonly called the television, TV, TV set, telly, tele, or tube, is a large device that combines a tuner, display, and loudspeakers, for the purpose of viewing and hearing television broadcasts, or as a computer monitor. Introduced in the late 1920s in mechanical form, television sets became a popular consumer product after World War II in electronic form, using cathode ray tube (CRT) technology. The addition of color to broadcast television after 1953 further increased the popularity of television sets in the 1960s, and an outdoor antenna became a common feature of suburban homes. The ubiquitous television set became the display device for the first recorded media for consumer use in the 1970s, such as Betamax, VHS; these were later succeeded by DVD. It has been used as a display device since the first generation of home computers and dedicated video game consoles in the 1980s. By the early 2010s, flat-panel television incorporating liquid-crystal display (LCD) technology, especially LED-backlit LCD technology, largely replaced CRT and other display technologies. Modern flat panel TVs are typically capable of high-definition display and can also play content from a USB device. Starting in the late 2010s, most flat panel TVs began to offer 4K and 8K resolutions.

Pixels per inch (ppi) and pixels per centimetre are measurements of the pixel density of an electronic image device, such as a computer monitor or television display, or image digitizing device such as a camera or image scanner. Horizontal and vertical density are usually the same, as most devices have square pixels, but differ on devices that have non-square pixels. Pixel density is not the same as resolution — where the former describes the amount of detail on a physical surface or device, the latter describes the amount of pixel information regardless of its scale. Considered in another way, a pixel has no inherent size or unit, but when it is printed, displayed, or scanned, then the pixel has both a physical size (dimension) and a pixel density (ppi).

The contrast ratio (CR) is a property of a display system, defined as the ratio of the luminance of the brightest shade (white) to that of the darkest shade (black) that the system is capable of producing. A high contrast ratio is a desired aspect of any display. It has similarities with dynamic range.

A thin-film-transistor liquid-crystal display is a variant of a liquid-crystal display that uses thin-film-transistor technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

<span class="mw-page-title-main">Projection screen</span> Apparatus for displaying a projected image

A projection screen is an installation consisting of a surface and a support structure used for displaying a projected image for the view of an audience. Projection screens may be permanently installed, as in a movie theater; painted on the wall; or portable with tripod or floor rising models as in a conference room or other non-dedicated viewing space. Another popular type of portable screens are inflatable screens for outdoor movie screening.

<span class="mw-page-title-main">Page orientation</span> Orientation of a page designed for viewing

Page orientation is the way in which a rectangular page is oriented for normal viewing. The two most common types of orientation are portrait and landscape. The term "portrait orientation" comes from visual art terminology and describes the dimensions used to capture a person's face and upper body in a picture; in such images, the height of the display area is greater than the width. The term "landscape orientation" also reflects visual art terminology, where pictures with more width than height are needed to fully capture the horizon within an artist's view.

<span class="mw-page-title-main">Large-screen television technology</span> Technology rapidly developed in the late 1990s and 2000s

Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to replace earlier flat-screen technologies in picture quality.

The technology of television has evolved since its early days using a mechanical system invented by Paul Gottlieb Nipkow in 1884. Every television system works on the scanning principle first implemented in the rotating disk scanner of Nipkow. This turns a two-dimensional image into a time series of signals that represent the brightness and color of each resolvable element of the picture. By repeating a two-dimensional image quickly enough, the impression of motion can be transmitted as well. For the receiving apparatus to reconstruct the image, synchronization information is included in the signal to allow proper placement of each line within the image and to identify when a complete image has been transmitted and a new image is to follow.

The viewing cone refers to the effective viewing directions of an LCD display, as seen from the eye. This collection of angles resembles a cone. The concept has been introduced as an international standard ISO 13406-2, which defines it as the range of viewing directions that can safely be used for the intended task without "reduced visual performance". This standard describes a complex procedure which evaluates the viewing cone from measurements of luminance and chromaticity versus direction of observation. ISO 13406-2 introduces 4 viewing direction range classes, from a wide viewing cone, for many simultaneous observers, to the so-called "privacy display", with a severely limited viewing cone. Compliance routes for different display applications can now be found in the successor standard ISO 9241-300.

Contrast in visual perception is a felt difference in appearance of two or more parts of a field seen simultaneously or successively.

<span class="mw-page-title-main">Optimum HDTV viewing distance</span> Television placement for immersive experience

Optimum HDTV viewing distance is the distance that provides the viewer with the optimum immersive visual HDTV experience.

<span class="mw-page-title-main">Field of view in video games</span>

In first person video games, the field of view or field of vision is the extent of the observable game world that is seen on the display at any given moment. It is typically measured as an angle, although whether this angle is the horizontal, vertical, or diagonal component of the field of view varies from game to game.

This glossary defines terms that are used in the document "Defining Video Quality Requirements: A Guide for Public Safety", developed by the Video Quality in Public Safety (VQIPS) Working Group. It contains terminology and explanations of concepts relevant to the video industry. The purpose of the glossary is to inform the reader of commonly used vocabulary terms in the video domain. This glossary was compiled from various industry sources.

A curved screen is an electronic display device that, contrasting with the flat-panel display, features a concave viewing surface. Curved screen TVs were introduced to the consumer market in 2013, primarily due to the efforts of Korean companies Samsung and LG, while curved screen projection displays, such as the Cinerama, have existed since the 1950s.

References

  1. "EloTouch Solutions | Support". support.elotouch.com. Retrieved 2019-11-21.
  2. "LCD Viewing Angles Explained". Focus LCDs.