This article needs additional citations for verification .(July 2023) |
In display technology parlance, viewing angle is the angle at which a display can be viewed with an acceptable visual performance. In a technical context, the angular range is called viewing cone defined by a multitude of viewing directions. The viewing angle can be an angular range over which the display view is acceptable, [1] or it can be the angle of generally acceptable viewing, such as a twelve o'clock viewing angle for a display optimized or viewing from the top. [2]
The image may seem garbled, poorly saturated, of poor contrast, blurry, or too faint outside the stated viewing angle range, the exact mode of "failure" depends on the display type in question. For example, some projection screens reflect more light perpendicular to the screen and less light to the sides, making the screen appear much darker (and sometimes colors distorted) if the viewer is not in front of the screen. Many manufacturers of projection screens thus define the viewing angle as the angle at which the luminance of the image is exactly half of the maximum. With LCD screens, some manufacturers have opted to measure the contrast ratio and report the viewing angle as the angle where the contrast ratio exceeds 5:1 or 10:1, giving minimally acceptable viewing conditions.
The viewing angle is measured from one direction to the opposite, giving a maximum of 180° for a flat, one-sided screen. A display may exhibit different behavior in horizontal and vertical axes, requiring users and manufacturers to specify maximum usable viewing angles in both directions. Usually, the screens are designed to facilitate greater viewing angles at the horizontal level, and smaller angles at the vertical level, should the two of them differ in magnitude.
The viewing angle for some displays is specified in only a general direction, such as 6 o'clock or 12 o'clock.
Early LCDs had strikingly narrow viewing cones, a situation that has been improved with current technology.
Narrow viewing cones of some types of displays have also been used to bring a measure of security in businesses, where employees handle private information in the presence of customers, banks being one example. Rectangular privacy filters fitting to the computer monitors have also been sold as accessories.
LEDs are measured so that the line along half the viewing angle from directly forward is half the brightness as at directly forward.
A computer monitor is an output device that displays information in pictorial or textual form. A discrete monitor comprises a visual display, support electronics, power supply, housing, electrical connectors, and external user controls.
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome.
The beam diameter or beam width of an electromagnetic beam is the diameter along any specified line that is perpendicular to the beam axis and intersects it. Since beams typically do not have sharp edges, the diameter can be defined in many different ways. Five definitions of the beam width are in common use: D4σ, 10/90 or 20/80 knife-edge, 1/e2, FWHM, and D86. The beam width can be measured in units of length at a particular plane perpendicular to the beam axis, but it can also refer to the angular width, which is the angle subtended by the beam at the source. The angular width is also called the beam divergence.
In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.
A plasma display panel (PDP) is a type of flat-panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large flat-panel displays to be released to the public.
A theodolite is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching.
The display resolution or display modes of a digital television, computer monitor, or other display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.
Pixels per inch (ppi) and pixels per centimetre are measurements of the pixel density of an electronic image device, such as a computer monitor or television display, or image digitizing device such as a camera or image scanner. Horizontal and vertical density are usually the same, as most devices have square pixels, but differ on devices that have non-square pixels. Pixel density is not the same as resolution — where the former describes the amount of detail on a physical surface or device, the latter describes the amount of pixel information regardless of its scale. Considered in another way, a pixel has no inherent size or unit, but when it is printed, displayed, or scanned, then the pixel has both a physical size (dimension) and a pixel density (ppi).
The contrast ratio (CR) is a property of a display system, defined as the ratio of the luminance of the brightest shade (white) to that of the darkest shade (black) that the system is capable of producing. A high contrast ratio is a desired aspect of any display. It has similarities with dynamic range.
A projection screen is an installation consisting of a surface and a support structure used for displaying a projected image for the view of an audience. Projection screens may be permanently installed on a wall, as in a movie theater, mounted to or placed in a ceiling using a rollable projection surface that retracts into a casing, painted on a wall, or portable with tripod or floor rising models as in a conference room or other non-dedicated viewing space. Another popular type of portable screens are inflatable screens for outdoor movie screening.
A sector antenna is a type of directional microwave antenna with a sector-shaped radiation pattern. The word "sector" is used in the geometric sense; some portion of the circumference of a circle measured in degrees of arc. 60°, 90° and 120° designs are typical, often with a few degrees 'extra' to ensure overlap and mounted in multiples when wider or full-circle coverage is required. The largest use of these antennas is as antennas for cell phone base-station sites. They are also used for other types of mobile communications, for example in Wi-Fi networks. They are used for limited-range distances of around 4 to 5 km.
Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to supersede earlier flat-screen technologies in picture quality.
The technology of television has evolved since its early days using a mechanical system invented by Paul Gottlieb Nipkow in 1884. Every television system works on the scanning principle first implemented in the rotating disk scanner of Nipkow. This turns a two-dimensional image into a time series of signals that represent the brightness and color of each resolvable element of the picture. By repeating a two-dimensional image quickly enough, the impression of motion can be transmitted as well. For the receiving apparatus to reconstruct the image, synchronization information is included in the signal to allow proper placement of each line within the image and to identify when a complete image has been transmitted and a new image is to follow.
The viewing cone refers to the effective viewing directions of an LCD display, as seen from the eye. This collection of angles resembles a cone. The concept has been introduced as an international standard ISO 13406-2, which defines it as the range of viewing directions that can safely be used for the intended task without "reduced visual performance". This standard describes a complex procedure which evaluates the viewing cone from measurements of luminance and chromaticity versus direction of observation. ISO 13406-2 introduces 4 viewing direction range classes, from a wide viewing cone, for many simultaneous observers, to the so-called "privacy display", with a severely limited viewing cone. Compliance routes for different display applications can now be found in the successor standard ISO 9241-300.
Contrast, in physics and digital imaging, is a quantifiable property used to describe the difference in appearance between elements within a visual field. It is closely linked with the perceived brightness of objects and is typically defined by specific formulas that involve the luminances of the stimuli. For example, contrast can be quantified as ΔL/L near the luminance threshold, known as Weber contrast, or as LH/LL at much higher luminances. Further, contrast can result from differences in chromaticity, which are specified by colorimetric characteristics such as the color difference ΔE in the CIE 1976 UCS.
Optimum HDTV viewing distance is the distance that provides the viewer with the optimum immersive visual HDTV experience.
In first person video games, the field of view or field of vision is the extent of the observable game world that is seen on the display at any given moment. It is typically measured as an angle, although whether this angle is the horizontal, vertical, or diagonal component of the field of view varies from game to game.
This glossary defines terms that are used in the document "Defining Video Quality Requirements: A Guide for Public Safety", developed by the Video Quality in Public Safety (VQIPS) Working Group. It contains terminology and explanations of concepts relevant to the video industry. The purpose of the glossary is to inform the reader of commonly used vocabulary terms in the video domain. This glossary was compiled from various industry sources.
A curved screen is an electronic display device that, contrasting with the flat-panel display, features a concave viewing surface. Curved screen TVs were introduced to the consumer market in 2013, primarily due to the efforts of Korean companies Samsung and LG, while curved screen projection displays, such as the Cinerama, have existed since the 1950s.