Voltage graph

Last updated

In graph theory, a voltage graph is a directed graph whose edges are labelled invertibly by elements of a group. It is formally identical to a gain graph, but it is generally used in topological graph theory as a concise way to specify another graph called the derived graph of the voltage graph.

Contents

Typical choices of the groups used for voltage graphs include the two-element group (for defining the bipartite double cover of a graph), free groups (for defining the universal cover of a graph), d-dimensional integer lattices (viewed as a group under vector addition, for defining periodic structures in d-dimensional Euclidean space), [1] and finite cyclic groups for n > 2. When Π is a cyclic group, the voltage graph may be called a cyclic-voltage graph.

Definition

Formal definition of a Π-voltage graph, for a given group Π:

Note that the voltages of a voltage graph need not satisfy Kirchhoff's voltage law, that the sum of voltages around a closed path is 0 (the identity element of the group), although this law does hold for the derived graphs described below. Thus, the name may be somewhat misleading. It results from the origin of voltage graphs as dual to the current graphs of topological graph theory.

The derived graph

The derived graph of a voltage graph is the graph whose vertex set is and whose edge set is , where the endpoints of an edge (e, k) such that e has tail v and head w are and .

Although voltage graphs are defined for digraphs, they may be extended to undirected graphs by replacing each undirected edge by a pair of oppositely ordered directed edges and by requiring that these edges have labels that are inverse to each other in the group structure. In this case, the derived graph will also have the property that its directed edges form pairs of oppositely oriented edges, so the derived graph may itself be interpreted as being an undirected graph.

The derived graph is a covering graph of the given voltage graph. If no edge label of the voltage graph is the identity element, then the group elements associated with the vertices of the derived graph provide a coloring of the derived graph with a number of colors equal to the group order. An important special case is the bipartite double cover, the derived graph of a voltage graph in which all edges are labeled with the non-identity element of a two-element group. Because the order of the group is two, the derived graph in this case is guaranteed to be bipartite.

Polynomial time algorithms are known for determining whether the derived graph of a -voltage graph contains any directed cycles. [1]

Examples

Any Cayley graph of a group Π, with a given set Γ of generators, may be defined as the derived graph for a Π-voltage graph having one vertex and Γ self-loops, each labeled with one of the generators in Γ. [2]

The Petersen graph is the derived graph for a -voltage graph in the shape of a dumbbell with two vertices and three edges: one edge connecting the two vertices, and one self-loop on each vertex. One self-loop is labeled with 1, the other with 2, and the edge connecting the two vertices is labeled 0. More generally, the same construction allows any generalized Petersen graph GP(n,k) to be constructed as a derived graph of the same dumbbell graph with labels 1, 0, and k in the group . [3]

The vertices and edges of any periodic tessellation of the plane may be formed as the derived graph of a finite graph, with voltages in .

Notes

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

<span class="mw-page-title-main">Tree (graph theory)</span> Undirected, connected and acyclic graph

In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.

<span class="mw-page-title-main">Hypergraph</span> Generalization of graph theory

In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices.

<span class="mw-page-title-main">Covering space</span> Type of continuous map in topology

In topology, a covering or covering projection is a map between topological spaces that, intuitively, locally acts like a projection of multiple copies of a space onto itself. In particular, coverings are special types of local homeomorphisms. If is a covering, is said to be a covering space or cover of , and is said to be the base of the covering, or simply the base. By abuse of terminology, and may sometimes be called covering spaces as well. Since coverings are local homeomorphisms, a covering space is a special kind of étale space.

In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.

<span class="mw-page-title-main">Orbifold</span> Generalized manifold

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.

<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

The Zarankiewicz problem, an unsolved problem in mathematics, asks for the largest possible number of edges in a bipartite graph that has a given number of vertices and has no complete bipartite subgraphs of a given size. It belongs to the field of extremal graph theory, a branch of combinatorics, and is named after the Polish mathematician Kazimierz Zarankiewicz, who proposed several special cases of the problem in 1951.

In mathematics, the Littelmann path model is a combinatorial device due to Peter Littelmann for computing multiplicities without overcounting in the representation theory of symmetrisable Kac–Moody algebras. Its most important application is to complex semisimple Lie algebras or equivalently compact semisimple Lie groups, the case described in this article. Multiplicities in irreducible representations, tensor products and branching rules can be calculated using a coloured directed graph, with labels given by the simple roots of the Lie algebra.

<span class="mw-page-title-main">SIC-POVM</span> Type of measurement in quantum mechanics

In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.

In the mathematical discipline of graph theory, a graph C is a covering graph of another graph G if there is a covering map from the vertex set of C to the vertex set of G. A covering map f is a surjection and a local isomorphism: the neighbourhood of a vertex v in C is mapped bijectively onto the neighbourhood of in G.

In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges an -vertex graph can have such that it does not have a subgraph isomorphic to . In this context, is called a forbidden subgraph.

In coding theory, Zemor's algorithm, designed and developed by Gilles Zemor, is a recursive low-complexity approach to code construction. It is an improvement over the algorithm of Sipser and Spielman.

<span class="mw-page-title-main">Odd cycle transversal</span>

In graph theory, an odd cycle transversal of an undirected graph is a set of vertices of the graph that has a nonempty intersection with every odd cycle in the graph. Removing the vertices of an odd cycle transversal from a graph leaves a bipartite graph as the remaining induced subgraph.

In mathematics, dependent random choice is a probabilistic technique that shows how to find a large set of vertices in a dense graph such that every small subset of vertices has many common neighbors. It is a useful tool to embed a graph into another graph with many edges. Thus it has its application in extremal graph theory, additive combinatorics and Ramsey theory.

References