Vortex (software)

Last updated
Vortex
Developer(s) CM Labs Simulations
Stable release
Vortex Studio 2020a / June 8, 2020;3 years ago (2020-06-08)
Operating system Windows, Linux
Type Simulation software platform
License Commercial proprietary software
Website www.cm-labs.com

Vortex Studio is a simulation software platform that is developed by CM Labs Simulations. It features a real-time physics engine that simulates rigid body dynamics, collision detection, contact determination, and dynamic reactions. It also contains model import and preparation tools, an image generator, and networking tools for distributed simulation, accessed through a desktop editor via a GUI. Vortex adds accurate physical motion and interactions to objects in visual-simulation applications for operator training, mission planning, product concept validation, heavy machinery and robotics design and testing, haptics devices, immersive and virtual reality (VR) environments. [1]

Contents

The Vortex Studio content creation platform and the C++ SDK have several modules that simulate physics-based particles, sensors, floating bodies, cable systems, earthmoving operations, grasping, and vehicles (wheeled or tracked). Vortex has a modular architecture: developers can integrate their projects into 3D visualization frameworks and deploy them in environments that contain software-in-the-loop (SIL), MATLAB, hardware-in-the-loop (HIL), and motion platform components.

History

Vortex Studio is developed by CM Labs Simulations Inc., a private company established in Montreal in 2001. CM Labs was created when the management of MathEngine Canada Inc. purchased a portion of the business from MathEngine PLC, the parent company in the UK. MathEngine Canada Inc. was originally the research and development team responsible for creating the Karma physics simulation engine for computer games.

CM Labs shifted its focus away from gaming. It now supports two distinct markets, visual simulation for training (VST), targeting Vortex at robotics and heavy-equipment operator training in both commercial and military applications, and heavy equipment prototyping and engineering, targeting mostly manufacturers and academia.

Vortex Studio has been under active development ever since the initial launch of the software in 2001. It usually has three releases per year (a, b and c).

Use

Vortex has been used for commercial, military, and academic projects. It has been used to simulate vehicles, robotics, and heavy equipment in construction, mining, forestry, marine, subsea, planetary, academic, and military environments. It has also been used to simulate the movements and behaviour of animals and insects for scientific purposes. Sample examples are:

See also

Related Research Articles

<span class="mw-page-title-main">Simulation</span> Imitation of the operation of a real-world process or system over time

A simulation is an imitative representation of a process or system that could exist in the real world. In this broad sense, simulation can often be used interchangeably with model. Sometimes a clear distinction between the two terms is made, in which simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Another way to distinguish between the terms is to define simulation as experimentation with the help of a model. This definition includes time-independent simulations. Often, computers are used to execute the simulation.

<span class="mw-page-title-main">Computer simulation</span> Process of mathematical modelling, performed on a computer

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics, astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.

<span class="mw-page-title-main">Train simulator</span> Computer-based simulation of rail transport operations

A train simulator is a computer based simulation of rail transport operations. They are generally large complicated software packages modeling a 3D virtual reality world implemented both as commercial trainers, and consumer computer game software with 'play modes' which lets the user interact by stepping inside the virtual world. Because of the near view modeling, often at speed, train simulator software is generally far more complicated software to write and implement than flight simulator programs.

<span class="mw-page-title-main">Open Dynamics Engine</span>

The Open Dynamics Engine (ODE) is a physics engine written in C/C++. Its two main components are a rigid body dynamics simulation engine and a collision detection engine. It is free software licensed both under the BSD license and the LGPL.

SIMNET was a wide area network with vehicle simulators and displays for real-time distributed combat simulation: tanks, helicopters and airplanes in a virtual battlefield. SIMNET was developed for and used by the United States military. SIMNET development began in the mid-1980s, was fielded starting in 1987, and was used for training until successor programs came online well into the 1990s.

<span class="mw-page-title-main">Mining simulator</span> Technology used for training miners

A mining simulator is a type of simulation used for entertainment as well as in training purposes for mining companies. These simulators replicate elements of real-world mining operations on surrounding screens displaying three-dimensional imagery, motion platforms, and scale models of typical and atypical mining environments and machinery. The results of the simulations can provide useful information in the form of greater competence in on-site safety, which can lead to greater efficiency and decreased risk of accidents.

<span class="mw-page-title-main">Maritime simulator</span> Environment simulating a ship

A maritime simulator or ship simulator is a system that simulates ships and maritime environments for training, research and other purposes. Today, simulator training given by maritime schools and academies is part of the basic training of maritime professionals.

Hardware-in-the-loop (HIL) simulation, HWIL, or HITL, is a technique that is used in the development and testing of complex real-time embedded systems. HIL simulation provides an effective testing platform by adding the complexity of the process-actuator system, known as a plant, to the test platform. The complexity of the plant under control is included in testing and development by adding a mathematical representation of all related dynamic systems. These mathematical representations are referred to as the "plant simulation". The embedded system to be tested interacts with this plant simulation.

<span class="mw-page-title-main">Microsoft Robotics Developer Studio</span>

Microsoft Robotics Developer Studio is a discontinued Windows-based environment for robot control and simulation that was aimed at academic, hobbyist, and commercial developers and handled a wide variety of robot hardware. It requires a Microsoft Windows 7 operating system or later.

Dynamic simulation is the use of a computer program to model the time-varying behavior of a dynamical system. The systems are typically described by ordinary differential equations or partial differential equations. A simulation run solves the state-equation system to find the behavior of the state variables over a specified period of time. The equation is solved through numerical integration methods to produce the transient behavior of the state variables. Simulation of dynamic systems predicts the values of model-system state variables, as they are determined by the past state values. This relationship is found by creating a model of the system.

Model-based design (MBD) is a mathematical and visual method of addressing problems associated with designing complex control, signal processing and communication systems. It is used in many motion control, industrial equipment, aerospace, and automotive applications. Model-based design is a methodology applied in designing embedded software.

MIMIC Simulator is a product suite from Gambit Communications consisting of simulation software in the network and systems management space.

Vehicle simulation games are a genre of video games which attempt to provide the player with a realistic interpretation of operating various kinds of vehicles. This includes automobiles, aircraft, watercraft, spacecraft, military vehicles, and a variety of other vehicles. The main challenge is to master driving and steering the vehicle from the perspective of the pilot or driver, with most games adding another challenge such as racing or fighting rival vehicles. Games are often divided based on realism, with some games including more realistic physics and challenges such as fuel management.

<span class="mw-page-title-main">Robotics simulator</span> Simulator to create applications for physical robots

A robotics simulator is a simulator used to create an application for a physical robot without depending on the physical machine, thus saving cost and time. In some case, such applications can be transferred onto a physical robot without modification.

<span class="mw-page-title-main">AnyKode Marilou</span> Software

anyKode Marilou is a modeling and simulation environment for mobile robots, humanoids, articulated arms and parallel robots operating in real-world conditions that respect the laws of physics. This robotics suite is used in research centers and industry for various projects like humanoid architectures, wheeled and multi legged vehicles, and multi-robot systems (Multi-agents).

AGX Multiphysics is a proprietary real-time physics engine developed by Algoryx Simulation AB that simulates rigid body dynamics, collision detection, dry frictional contacts, jointed systems, motors, fluids, deformable materials, hydraulics, hydrodynamics, cable systems and wires. AGX targets several domains, such as virtual reality real-time simulator applications for training and marketing; computer aided engineering and virtual prototyping; movie visual effects; and education. For education, components of AGX are used in the end-user software product Algodoo also developed and sold by Algoryx. Users of AGX simulate e.g. granular systems, construction equipment, forestry machines, mining processes and machines, biomechanics, industrial robots, ship and anchor handling processes and cranes. AGX is often integrated with 3D visualization frameworks such as OpenSceneGraph and OGRE and often also with actual hardware and control systems of the real-world version of the simulator. AGX is integrated in many 3D modeling and CAD systems, including Dynamics for SpaceClaim.

<span class="mw-page-title-main">Astronaut training</span> Preparing astronauts for space missions

Astronaut training describes the complex process of preparing astronauts in regions around the world for their space missions before, during and after the flight, which includes medical tests, physical training, extra-vehicular activity (EVA) training, procedure training, rehabilitation process, as well as training on experiments they will accomplish during their stay in space.

AnimatLab is an open-source neuromechanical simulation tool that allows authors to easily build and test biomechanical models and the neural networks that control them to produce behaviors. Users can construct neural models of varied level of details, 3D mechanical models of triangle meshes, and use muscles, motors, receptive fields, stretch sensors and other transducers to interface the two systems. Experiments can be run in which various stimuli are applied and data is recorded, making it a useful tool for computational neuroscience. The software can also be used to model biomimetic robotic systems.

CM Labs Simulations is a private company established in Montreal in 2001. CM Labs is the developer of the Vortex simulation platform. The Vortex platform is composed of applications for creating interactive vehicle and mechanical equipment simulations in virtual environments. Vortex simulates rigid body dynamics, collision detection, contact determination, and dynamic reactions. CM Labs also manufactures crane and heavy equipment simulators based on Vortex technology.

References

  1. "Vortex Simulation Software | Robotics | CM Labs Simulations". cm-labs.com. Archived from the original on 2016-03-04. Retrieved 2016-02-18.
  2. "Airbus Defence and Space uses Vortex for EOD Robot Training Simulation | Robotics | CM Labs Simulations". cm-labs.com. 2013-11-01. Archived from the original on 2020-08-10. Retrieved 2016-02-18.
  3. 1 2 "CMLabs and Red Team Racing" (PDF). Archived from the original (PDF) on August 7, 2011. Retrieved August 7, 2009.
  4. "Simulation - Innovative Training Solutions - Operating Engineers Training Institute of Ontario". Archived from the original on March 31, 2009. Retrieved August 7, 2009.
  5. "IUOE Local 721 - Vortex Mobile Crane Simulator". Archived from the original on September 24, 2009. Retrieved August 7, 2009.
  6. "Neuromechanical & Biomechanical Simulation". AnimatLab.com. Archived from the original on 2016-03-03. Retrieved 2016-02-18.

Further reading